1.题目
给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1]
输出:1
2. 题解
class Solution {
public int maxArea(int[] height) {
int res = 0;
int i = 0;
int j = height.length-1;
while(i<j){
int area = (j-i) * Math.min(height[i],height[j]);
res = Math.max(res,area);
if(height[i] < height[j]){
i++;
} else {
j--;
}
}
return res;
}
}
3. 解析
来自这位老师:nettee:O(n) 双指针解法:理解正确性、图解原理(C++/Java)
- int res = 0; - 初始化结果变量res为0,用于存储最大水位。
- int i = 0; int j = height.length-1; - 设置两个指针i和j,分别代表数组的起始位置和结束位置。
- while(i<j) {…} - 开始一个while循环,直到i小于j为止(即i和j没有重叠)。在此期间,我们会计算并更新最大水位res。
- int area = (j-i) * Math.min(height[i], height[j]); - 计算当前的水位面积。它等于两个垂直线之间的距离乘以两条线的短边的长度(因为水的实际高度由较矮的线确定,所以我们取最小的那个)。
- res = Math.max(res, area); - 更新最大水位res。如果当前的水位面积大于之前计算得到的最大值,则替换旧的最大值;否则保持原来的最大值不变。
- 判断哪一个指针(i或j)应该移动:
- if(height[i] < height[j]) { i++; } - 如果左边线的长度小于右边线,意味着水的面积由短边的位置决定,所以将左边的指针向右移。
- else { j–; } - 否则,也就是当右边线的长度小于或等于左边时,将右边的指针向左移动。
- return res; - 循环结束后,返回最大水位res。