[USACO06FEB] Backward Digit Sums G/S——洛谷pP1118

目录

 [USACO06FEB] Backward Digit Sums G/S

 题面翻译

输入格式

输出格式

问题分析


 [USACO06FEB] Backward Digit Sums G/S

 题面翻译

有这么一个游戏:

  • 写出一个 1~ n的排列 ai,然后每次将相邻两个数相加,构成新的序列,再对新序列进行这样的操作,显然每次构成的序列都比上一次的序列长度少 1,直到只剩下一个数字位置。

下面是一个例子:

- 3,1,2,4;
- 4,3,6;
- 7,9;
- 16。

  • 最后得到 16 这样一个数字。
  • 现在想要倒着玩这样一个游戏,如果知道 n,以及最后得到的数字的大小 sum,请你求出最初序列 a_i(应该是一个 1~ n 的排列)。若答案有多种可能,则输出字典序最小的那一个。

输入格式

共一行两个正整数 n,sum。

输出格式

输出包括一行,为字典序最小的那个答案。

当无解的时候,请什么也不输出。

样例 

  • 样例输入 

```
4 16
```

  • 样例输出 

```
3 1 2 4
```

问题分析

本题用暴力法会超时,对1~n这n个数全排列完了之后还要进行三角运算判断是否等于sum,对每个序列三角运算运算次数为1+2+3+4+5+.....+n=\frac{n(n+1)}{2},时间复杂度为O(n^{2}),那么总复杂度就为O(n!n^{2}),显然会超时

  • 如果可以找到第一行与最后一行的关系那么问题就很简单了,不妨设原序列为a,b,c,d,然后算下去就可以发现sum=1*a+3*b+3*c+1*d,观察系数会发现这就是杨辉三角,那么我们只需要事先计算好1~n层的杨辉三角,就可以轻松得到系数,到此算法优化为O(n!n)
  • 之后就是剪枝了,有句话说的好没有剪枝的dfs不是好的dfs算法(bushi),确实,如果dfs没有剪枝和暴力法其实没有区别,本题使用的时最优化剪枝
#include<iostream>
#include <cstring> 
//要使用memset需要导入cstring,我的vs自带了,搞得wrong好几次(草率了)
using namespace std;

int n, sum,flag=0;   //flag用于控制程序结束
bool vis[20];  //记录该数字是否被用过,这里所求的序列是不允许重复的
int c[20];     //存储答案
int a[13][13];  //存储杨辉三角

//初始化杨辉三角
void init() {
	memset(a, 0, sizeof(a));
	memset(vis, false, sizeof(vis)); //顺便把vis初始化
	a[1][1] = 1; //这个要注意,会发现a[1][1]是不符合公式的,所以要单独写
	for (int i = 2; i <= 12; i++) {
		for (int j = 1; j <= i; j++) {
			a[i][j] = a[i - 1][j] + a[i - 1][j - 1];  //这个公式很好推的,多列几项知道了
		}
	}
	//打印杨辉三角代码
	for (int i = 1; i <= 12; i++) {
		for (int j = 1; j <= i; j++) {
			cout << a[i][j] << "  ";
		}
		cout << endl;
	}
}

//这题需要排列,所以用dfs更方便,没有排列我还是习惯用bfs。。。。
//本题其实还可以使用,stl的next_permutation()函数,但会相对慢一点,感兴趣的同学可以自行百度(很好用的函数*_*)
void dfs(int k,int ans) {
	//控制程序退出,其实也可以用exit(0)但我最开始上c语言课时好像听老师说不要随便用exit,不懂,打瞌睡去了/*/&%¥#@
	if (flag == 1) {
		return;
	}
	if (ans > sum) return;  //剪枝,如果已经大于sum就没必要继续深搜了,注意这个剪枝放的位置
	//注意这里是n+1,这取决于你的编码习惯
	if (k == n+1 && ans == sum) {
		for (int i = 1; i <= n; i++) {
			cout << c[i] << " ";
		}
		flag = 1;
		return;
	}
	for (int i = 1; i <= n; i++) {
		if (!vis[i]) {
			vis[i] = true;
			c[k] = i;
			dfs(k + 1, ans + a[n][k] * i);  //添加的每个数字都要乘以它前面的系数(杨辉三角)
			vis[i] = 0;
		}
	}
}

int main() {
	init();
	cin >> n >> sum;
	dfs(1, 0);
	return 0;
}

### 回答1: p109 [noip2004 提高组] 合并果子: 这道题目是一道经典的贪心算法题目,题目大意是给定n个果子,每个果子的重量为wi,现在需要将这n个果子合并成一个果子,每次合并需要消耗的代价为合并的两个果子的重量之和,求最小的代价。 我们可以使用贪心算法来解决这个问题,每次选择两个最小的果子进行合并,然后将合并后的果子的重量加入到集合中,重复这个过程直到只剩下一个果子为止。 这个算法的正确性可以通过反证法来证明,假设存在一种更优的合并方案,那么这个方案一定会在某一步将两个比当前选择的两个更小的果子进行合并,这样就会得到一个更小的代价,与当前选择的方案矛盾。 usaco06nov fence repair: 这道题目是一道经典的贪心算法题目,题目大意是给定n个木板,每个木板的长度为li,现在需要将这n个木板拼接成一块长度为L的木板,每次拼接需要消耗的代价为拼接的两个木板的长度之和,求最小的代价。 我们可以使用贪心算法来解决这个问题,每次选择两个最小的木板进行拼接,然后将拼接后的木板的长度加入到集合中,重复这个过程直到只剩下一个木板为止。 这个算法的正确性可以通过反证法来证明,假设存在一种更优的拼接方案,那么这个方案一定会在某一步将两个比当前选择的两个更小的木板进行拼接,这样就会得到一个更小的代价,与当前选择的方案矛盾。 ### 回答2: 题目描述: 有n个果子需要合并,合并任意两个果子需要的代价为这两个果子的重量之和。现在有一台合并机器,可以将两个果子合并成一堆并计算代价。问将n个果子合并成一堆的最小代价。 这个问题可以用贪心算法来解决,我们可以使用一个最小堆来存储所有果子的重量。每次从最小堆中取出两个最小的果子,将它们合并成为一堆,并将代价加入答案中,将新堆的重量加入最小堆中。重复以上步骤,直到最小堆中只剩下一堆为止。这样得到的代价就是最小的。 证明如下: 假设最小堆中的果子按照重量从小到大依次为a1, a2, ..., an。我们按照贪心策略,每次都将重量最小的两个果子合并成为一堆,设合并的过程为b1, b2, ..., bn-1。因此,可以发现,序列b1, b2, ..., bn-1必然是一个前缀和为a1, a2, ..., an的 Huffman 树变形。根据哈夫曼树的定义,这个树必然是最优的,能够得到的代价最小。 因此,使用贪心策略得到的答案必然是最优的,而且时间复杂度为O(n log n)。 对于[usaco06nov] fence repair g这道题,其实也可以用相同的思路来解决。将所有木板的长度存储在一个最小堆中,每次取出最小的两个木板长度进行合并,代价即为这两个木板的长度之和,并将合并后木板的长度加入最小堆中。重复以上步骤,直到最小堆中只剩下一块木板。得到的代价就是最小的。 因此,贪心算法是解决这类问题的一种高效、简单但有效的方法,可以应用于很多有贪心性质的问题中。 ### 回答3: 这两个题目都需要对操作进行模拟。 首先是合并果子。这个题目先将所有果子放进一个优先队列中。每次取出来两个果子进行合并,直到只剩下一个果子即为答案。合并的代价为两个果子重量之和。每次合并完之后再将新的果子放入优先队列中,重复上述过程即可。 再来看fence repair。这个题目需要用到贪心和并查集的思想。首先将所有板子的长度放入一个最小堆中,每次取出堆顶元素即为最短的板子,将其与其相邻的板子进行合并,合并的长度为这两块板子的长度之和。操作完之后再将新的板子长度放入最小堆中,重复上述过程直到只剩下一块板子。 关于合并操作,可以使用并查集来实现。维护每个板子所在的集合,每次操作时合并两个集合即可。 最后,需要注意的是题目中给出的整数都很大,需要使用long long来存储避免溢出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值