Codeforces Round 895 (Div. 3) G. Replace With Product 数学、暴力

题目链接

题目大意

        一个由n (1<=n<=2e5) 个正整数组成的数组a,(1<=ai<=1e9),进行一次操作:选择两个端点l、r (1<=l,r<=n),将 a [ l ]~a [ r ] 所有的数替换成他们的乘积。问:为最大化数组a的和,l、r该如何选择。

思路

        察看数据发现,数组a的和最大能到 2e5*1e9=2e14,当a的所有数的乘积大于这个值时,去掉左右两端的1,剩余的中间的数全部做乘积得到的结果是最优的;若所有数的和小于这个值时,找有多少个不为1的数,最小为2,而\log_{2}1e14约等于48,由此可知大于1的数最多不超过50个可直接暴力求解,先存下来之后,两层循环枚举左右端点,找最优解。

code

#include<iostream>
#include<vector>
using namespace std;
using ll = long long;
const ll N = 2e5 + 10, maxn = 2e14;
ll a[N], mul[N], sum[N], n;
vector<int>v;

void solve()
{
	cin >> n;
	v.clear();
	mul[0] = 1;

	for (int i = 1; i <= n; i++){
		cin >> a[i];
		mul[i] = mul[i - 1] * a[i];
		sum[i] = sum[i - 1] + a[i];
		if (a[i] != 1)v.push_back(i);
	}
		
	ll now = 1;
	for (int i = 1; i <= n; i++)
	{
		if (now > maxn / a[i])
		{
			int l = 1, r = n;
			while (a[l] == 1)++l;
			while (a[r] == 1)--r;
			cout << l << " " << r << "\n";
			return;
		}
		now *= a[i];
	}

	ll l = 1, r = 1, ans = 0;
	for (int i = 0; i < v.size(); i++)
		for (int j = i; j < v.size(); j++)
		{
			ll tmp = sum[n] - sum[v[j]] + sum[v[i] - 1];
			tmp += mul[v[j]] / mul[v[i] - 1];
			if (tmp > ans)
			{
				l = v[i];
				r = v[j];
				ans = tmp;
			}
		}
	cout << l << " " << r << "\n";
}
int main()
{
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);
	int t = 1;
	cin >> t;
	while (t--)
	{
		solve();
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值