数据结构作业8--累加的递归实现-汉诺塔问题

摘要汉诺塔问题是智商的分界线.

代码本体
#include <stdio.h>

/**
 * 功能函数
 */
void hanoi(int paraN, char paraSource, char paraDestination, char paraTransit) {
	if (paraN <= 0) {
		return;
	} else {
		hanoi(paraN - 1, paraSource, paraTransit, paraDestination);
		printf("%c -> %c \r\n", paraSource, paraDestination);
		hanoi(paraN - 1, paraTransit, paraDestination, paraSource);
	}// Of if
}// Of hanoi

/**
 * 测试函数
 */
void hanoiTest() {
    printf("---- hanoiTest begins. ----\r\n");

	printf("2 plates\r\n");
	hanoi(2, 'A', 'B', 'C');

	printf("3 plates\r\n");
	hanoi(3, 'A', 'B', 'C');

    printf("---- hanoiTest ends. ----\r\n");
}// Of addToTest

/**
 主函数
 */
void main() {
	hanoiTest();
}// Of main
 

运行结果
---- addToTest begins. ----
2 plates
A -> C
A -> B
C -> B
3 plates
A -> B
A -> C
B -> C
A -> B
C -> A
C -> B
A -> B
---- addToTest ends. ----
Press any key to continue

代码说明
  1. 累加的递归实现, 纯粹是为了本程序打基础.
  2. 汉诺塔问题很简单, 函数满打满算只有 9 行; 汉诺塔问题很困难, 不把几个参数搞清楚, 直接在里面绕晕.
  3. 从这里可以看到使用有意义的, 长变量名的优势: 程序可读性获得大幅提升.
  4. 初始条件是 0 个盘子, 这样对于负数个盘子的判断就比较方便.
  5. 算法的时间复杂度是 O ( 2 n ) O(2^n)O(2n), 空间复杂度是 O ( n ) O(n)O(n). 都需要画图来解释.
图示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值