简单多状态dp第三弹 leetcode -买卖股票的最佳时机问题


 

309. 买卖股票的最佳时机含冷冻期

买卖股票的最佳时机含冷冻期

分析:

使用动态规划解决

状态表示:

由于有「买入」「可交易」「冷冻期」三个状态,因此我们可以选择用三个数组,其中:
dp[i][0] 表示:第 i 天结束后,处于「买入」状态,此时的最大利润。
dp[i][1] 表示:第 i 天结束后,处于「可交易」状态,此时的最大利润。
dp[i][2] 表示:第 i 天结束后,处于「冷冻期」状态,此时的最大利润。

状态转移方程:

1.处于买入状态的时候,我们现在有股票,此时不能买股票,只能继续持有股票,或者卖
出股票;

2.处于卖出状态的时候:

如果在冷冻期,不能买入。

如果 不在冷冻期,才能买入。

画出状态图

根据状态图可以得出:

买入->买入:什么都不干

买入->卖出:买入股票

对应代码:a[i]=max(a[i-1],c[i-1]-prices[i-1]);

卖出->卖出:什么都不干

卖出->冷冻期:卖出股票

对应代码:b[i]=max(b[i-1],a[i-1]+prices[i-1]);

冷冻期->冷冻期:什么都不干

冷冻期->买入:冷冻期结束

对应代码:c[i]=max(c[i-1],b[i-1]);

代码:

class Solution {
public:
    int maxProfit(vector<int>& prices) {

        int n=prices.size();

        vector<int>a(n+1);//买入
        vector<int>b(n+1);//卖出
        vector<int>c(n+1);//冷冻

        a[0]-=prices[0];
        for(int i=1;i<=n;i++)
        {
            a[i]=max(a[i-1],c[i-1]-prices[i-1]);
            b[i]=max(b[i-1],a[i-1]+prices[i-1]);
            c[i]=max(c[i-1],b[i-1]);
        }

        return max(b[n],c[n]);//从卖出和冷冻期中选出最大值,因为买入状态肯定不是最大值,因为还有股票没有卖出。

    }
};


714. 买卖股票的最佳时机含手续费

 买卖股票的最佳时机含手续费

分析:

使用动态规划解决

 

与 买卖股票的最佳时机含冷冻期 问题相似,我们直接画出状态图写状态方程。

状态图:

 

买入->买入:什么都不干

买入->卖出:买入股票

对应代码:a[i]=max(a[i-1],c[i-1]-prices[i-1]);

卖出->卖出:什么都不干

卖出->买入:卖出股票并支付手续费

对应代码:b[i]=max(b[i-1],a[i-1]+prices[i-1]-fee);

代码:

class Solution {
public:
    int maxProfit(vector<int>& prices, int fee) {
        int n=prices.size();

        vector<int>a(n+1);//买入
        vector<int>b(n+1);//卖出


        a[0]-=prices[0];
        for(int i=1;i<=n;i++)
        {
            a[i]=max(a[i-1],b[i-1]-prices[i-1]);
            b[i]=max(b[i-1],a[i-1]+prices[i-1]-fee);
        }

        return b[n];

    }
};


123. 买卖股票的最佳时机 III

买卖股票的最佳时机 III

状态表示:

这里我们选择比较常用的方式,以某个位置为结尾,结合题目要求,定义一个状态表示:
由于有「买入」「可交易」两个状态,因此我们可以选择用两个数组。但是这道题里面还有交易次
数的限制,因此我们还需要再加上一维,用来表示交易次数。其中:

▪ f[i][j] 表示:第 i 天结束后,完成了 j 次交易,处于「买入」状态,此时的最大利
润;
▪ g[i][j] 表示:第 i 天结束后,完成了 j 次交易,处于「卖出」状态,此时的最大利
润。

状态转移方程:
 

A.对于 f[i][j] ,我们有两种情况到这个状态:


1. 在 i - 1 天的时候,交易了 j 次,处于「买入」状态,第 i 天啥也不干即可。此时最
大利润为: f[i - 1][j] ;


2. 在 i - 1 天的时候,交易了 j 次,处于「卖出」状态,第 i 天的时候把股票买了。此
时的最大利润为: g[i - 1][j] - prices[i] 。


综上,我们要的是「最大利润」,因此是两者的最大值: f[i][j] = max(f[i - 1][j],
g[i - 1][j] - prices[i]) 。

B.对于 g[i][j] ,我们也有两种情况可以到达这个状态:


1.在 i - 1 天的时候,交易了 j 次,处于「卖出」状态,第 i 天啥也不干即可。此时的
最大利润为: g[i - 1][j] ;


2.在 i - 1 天的时候,交易了 j - 1 次,处于「买入」状态,第 i 天把股票卖了,然
后就完成了 j 比交易。此时的最大利润为: f[i - 1][j - 1] + prices[i] 。但
是这个状态不一定存在,要先判断一下。

综上,我们要的是最大利润,因此状态转移方程为:
g[i][j] = g[i - 1][j];
if(j >= 1) g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);

代码:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        const int INF=0x3f3f3f3f;
        int n=prices.size();

        vector<vector<int>>f(n+1,vector<int>(3,-INF));//买
        vector<vector<int>>g(n+1,vector<int>(3,-INF));//卖


        f[0][0]=-prices[0];
        g[0][0]=0;

        for(int i=1;i<n;i++)
        {
            for(int j=0;j<3;j++)
            {
                f[i][j]=max(f[i-1][j],g[i-1][j]-prices[i]);

                g[i][j]=g[i-1][j];
                if(j-1>=0)
                {
                    g[i][j]=max(g[i][j],f[i-1][j-1]+prices[i]);
                }
            }
        }
        int ans=0;
        for(int i=0;i<3;i++)
        {
            ans=max(ans,g[n-1][i]);
        }

        return ans;
    }
};

 

评论 65
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mike!

你的鼓励是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值