著名的快速排序算法里有一个经典的划分过程:我们通常采用某种方法取一个元素作为主元,通过交换,把比主元小的元素放到它的左边,比主元大的元素放到它的右边。 给定划分后的 N 个互不相同的正整数的排列,请问有多少个元素可能是划分前选取的主元?
例如给定 N=5, 排列是1、3、2、4、5。则:
- 1 的左边没有元素,右边的元素都比它大,所以它可能是主元;
- 尽管 3 的左边元素都比它小,但其右边的 2 比它小,所以它不能是主元;
- 尽管 2 的右边元素都比它大,但其左边的 3 比它大,所以它不能是主元;
- 类似原因,4 和 5 都可能是主元。
因此,有 3 个元素可能是主元。
输入格式:
输入在第 1 行中给出一个正整数 N(≤105); 第 2 行是空格分隔的 N 个不同的正整数,每个数不超过 109。
输出格式:
在第 1 行中输出有可能是主元的元素个数;在第 2 行中按递增顺序输出这些元素,其间以 1 个空格分隔,行首尾不得有多余空格。
输入样例:
5
1 3 2 4 5
输出样例:
3
1 4 5
代码长度限制
16 KB
Java (javac)
时间限制
800 ms
内存限制
64 MB
其他编译器
时间限制
200 ms
内存限制
64 MB
#include <stdio.h>
#include <stdlib.h>
int compare(const void* a,const void* b){
int *pa=(int *)a;
int *pb=(int *)b;
return *pa-*pb;
}
int main(){
int leftmax[100001],rightmin[100001];
int N;
scanf("%d",&N);
int list[100001],mine[100001];
for(int i=0;i<N;i++){
scanf("%d",&list[i]);
}
leftmax[0]=list[0];
rightmin[N-1]=list[N-1];
for(int i=1;i<N;i++){
if(list[i]>leftmax[i-1]){
leftmax[i]=list[i];
}else{
leftmax[i]=leftmax[i-1];
}
}
for(int i=N-2;i>=0;i--){
if(list[i]<rightmin[i+1]){
rightmin[i]=list[i];
}else{
rightmin[i]=rightmin[i+1];
}
}
int count=0;
for(int i=0;i<N;i++){
if(i==0){
if(list[i]<rightmin[i+1]){
mine[count++]=list[i];
}
}else if(i==N-1){
if(list[i]>leftmax[i-1]){
mine[count++]=list[i];
}
}else{
if(list[i]>leftmax[i-1]&&list[i]<rightmin[i+1]){
mine[count++]=list[i];
}
}
}
qsort(mine,count,sizeof(int),compare);
printf("%d\n",count);
for(int i=0;i<count;i++){
if(i==0){
printf("%d",mine[i]);
}else{
printf(" %d",mine[i]);
}
}
printf("\n");
}