算法目的
解决无负环图上任意两点间最短路径问题
算法介绍
Johson 算法通过一种方法来给每一条重新标注边权。我们新建一个虚拟节点,可编号为 0,设这个点连接其它所有点的边权为 0。接下来跑 Bellman-Ford 算法求出从0结点到其它所有点的最短路,记为 h[i]。那么就可用 h[i] 重新设置边的边权(如下)。接下来以每个点跑 n 轮 Dijkstra 算法即可求出任意两点间的最短路了。
假如存在一条从 u 到 v 的结点,边权为 w 的边,则我们将该边的边权重新设置为 w + h [ u ] − h [ v ] w+h[u]-h[v] w+h[u]−h[v]
优点
最显著的优点是快于其它最短路算法解决多源最短路问题,任意两点间的最短路可以枚举起点,跑 n 次 Bellman-Ford 算法解决,时间复杂度是 O O O( e × e\times e× v 2 \mathbf{v}^2 v2),也可以直接用 Floyd 算法解决,时间复杂度为 O O O( v 3 \mathbf{v}^3 v3)。我们知道堆优化的 Dijkstra 算法求最短路的时间复杂度比 Bellman-Ford 更优,如果枚举起点跑 n 次 Dijkstra 算法,就可以把时间复杂度降为 O ( v e l o g e ) O(veloge) O(veloge),但是 Dijkstra 算法不能解决带负边权的最短路,因此我们需要对原图的边进行预处理,确保所有边的边权均为非负,而 Johnson 算法的第一步就是对边进行预处理。
板子题目:P5905 【模板】全源最短路(Johnson)
参考代码
#include<stdio.h>
#include<queue>
#include<vector>
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<string.h>
#include<stack>
#include<limits.h>
#include<string.h>
#include<math.h>
#define inf 500005</