题目要求:利用筛法求出100内的素数,输出时每个素数的最小宽度为5
筛法的定义:筛法是一种简单检定素数的算法。据说是古希腊的埃拉托斯特尼(Eratosthenes,约公元前274-194年)发明的又称埃拉托斯特尼筛法(sieveofEratosthenes)。具体做法是:给出要筛数值的范围 n,找出n以内的素数P1,P2,P3,......,pk。先用2去饰,即把2留下,把2的倍数剔除掉,再用下一个素数,也就是3饰,把3留下,把3的倍数剔除掉,接下去用下一个素数5筛,把5留下,把5的倍数剔除掉,不断重复下去......。因为希腊人是把数写在涂腊的板上,每要划去一个数,就在上面记以小点,寻求质数的工作完毕后,这许多小点就像一个筛子,所以就把埃拉托斯特尼的方法叫做“埃拉托斯特尼筛法”,简称“筛法”
步骤:
1.列出2以后的所有序列:
2 3 4 5 6 7 8 9 10 11 12 13 14 1 16 17 18 19 20 21 22 23 24 25
2.标出序列中的第一个素数,也就是 2,将剩下序列中,划掉2的倍数(用除线标出),序列变成
2 3 5 7 9 11 13 15 17 19 21 23 25
3.如果现在这个序列中最大数小于最后一个标出的素数的平方,那么剩下的序列中所有的数都是素数,否则回到第二步。
4.此例子中,因为25大于2的平方,所以返回第二步
5.剩下的序列中第一个素数是 3,将主序列中3的倍数划出(除线)主序列变成:
2 3 7 11 13 17 19 23 25
6.得到的素数有:2,3
7.25仍然大于3的平方,所以还要返回第二步
8.现在序列中第一个素数是5同样将序列中5的倍数划出,主序列成了:
2 3 5 7 11 13 17 19 23 25
9.得到的素数有:2 3 5。
10.因为25等于5的平方,所以跳出循环
结论:去掉划线的数字,2到25之间的素数是23 57 11 13 17 19 23
代码如下:
int main() {
const int max=100;
int isprime[max];
int i, n;
for (i = 0; i < max; i++) {
isprime[i] = 1;//将数组中所有数标记为1先
}
for (n = 2; n < max; n++) {
if (isprime[n]) {//判断数组中的第n个数是否为1
for (i = 2; n * i < max; i++) {//如果为1,代表它是素数
isprime[n * i] = 0;//所有它的倍数都标记为0
}
}
}
for (i = 2; i < 100; i++) {
if (isprime[i]) {
printf("%5d", i);//如果第i个为1,说明它没被去掉,则为素数
}
}
return 0;
}