文章目录
一,加入课程QQ群
(一)班级QQ群
- 2023软件2班(3+2)619798014
(二)入群要求
- 实名
二,加入学习通班级群
(一)学习通班级群
- 2023软件2班(3+2)48362003
(二)手势签到
- 2023软件2班(3+2)签到结果:全勤
三,使用思维导图工具
(一)安装XMind工具
- 安装完成后桌面会生成图标
(二)创建思维导图自我介绍
- 自我介绍
(三)操作要点小节
-
选择模板,选择风格
-
添加节点
- 添加子节点:
tab
- 添加兄弟节点:
enter
- 添加子节点:
-
删除节点:选中节点按
del
-
给节点添加图标(任务优先级)
-
生成概要
-
保存思维导图
-
导出成png图片
四,使用大语言模型
- 有很多大语言模型,比如ChatGPT、通义千问、文心一言、豆包……
- 我们使用通义千问(https://tongyi.aliyun.com/qianwen/)
- 注册登录
- 将思维导图的自我介绍写成一篇具有某种风格的自我介绍文章
- 单击【发送】按钮,生成满足用户要求的文字
五,创建CSDN博客
(一)选择Markdown编辑器
- **在内容管理的博客设置里,选择默认编辑器:MarkDown编辑器
- 注意,千万不要忘了单击【保存】按钮,这样才能让设置生效
(二)Markdown基本语法
1,自动生成文章目录
- 在文章最前面添加注解:
@[toc]
2,各个级别标题
#
: 一级标题##
:二级标题###
: 三级标题- 注意:
#
打完之后必须空一格
3,修改文本样式
(1)内容变红
- 用一对反单引号:``
(2)文本斜体
- 一对单星号**
(3)文本加粗
- 一对双星号:****
4,制作表格
- 2023软件2班(3+2)
学号 | 姓名 | 性别 | 年龄 | 班级 | 手机 |
---|---|---|---|---|---|
232067001 | 李长海 | 男 | 19 | 2023软件2班(3+2) | 123456785 |
232067729 | 吴兴江 | 男 | 19 | 2023软件2班(3+2) | 123456785 |
232067021 | 徐伟 | 男 | 19 | 2023软件2班(3+2) | 123456785 |
232067054 | 杨谦 | 男 | 19 | 2023软件2班(3+2) | 123456785 |
232067031 | 王和顺 | 男 | 19 | 2023软件2班(3+2) | 123456785 |
5,数学公式
- 勾股定理 : a 2 + b 2 = c 2 a ^2+b^2 = c^2 a2+b2=c2
- 一元二次方程: a x 2 + b x + c = 0 ( a ≠ 0 ) ≠ : n o t e q u a l ax^2+bx^+c=0(a\ne0) \ne: not equal ax2+bx+c=0(a=0)=:notequal
- 求根公式
- x 1 = − b + b 2 − 4 a c 2 a x_1=\displaystyle\frac{-b+\sqrt{b^2-4ac}}{2a} x1=2a−b+b2−4ac
- x 2 = − b − b 2 − 4 a c 2 a x_2=\displaystyle\frac{-b-\sqrt{b^2-4ac}}{2a} x2=2a−b−b2−4ac
- x = − b ± b 2 − 4 a c 2 a x=\displaystyle\frac{-b\pm\sqrt{b^2-4ac}}{2a} x=2a−b±b2−4ac
- x = − b ∓ b 2 − 4 a c 2 a x=\displaystyle\frac{-b\mp\sqrt{b^2-4ac}}{2a} x=2a−b∓b2−4ac
- 不等式:
-
x
+
4
>
6
x+4>6
x+4>6
\gt: greater than
-
3
+
2
x
<
6
3+2x<6
3+2x<6
\\lt: less than
-
x
+
4
≥
6
x+4≥6
x+4≥6
\\ge: greater than or equal to
-
3
+
2
x
≤
6
3+2x≤6
3+2x≤6
\lt: less than or equal to
-
x
+
4
>
6
x+4>6
x+4>6
6,不定积分
- 公式
- ∫ f ( x ) d x = F ( x ) + C , F ′ ( x ) = f ( x ) \displaystyle \int f(x)dx=F(x)+C, F'(x)=f(x) ∫f(x)dx=F(x)+C,F′(x)=f(x)
- 示例
- 求 f ( x ) = x 2 − 3 x + 2 f(x)=x^2-3x+2 f(x)=x2−3x+2的不定积分
- ∫ f ( x ) d x = ∫ ( x 2 − 3 x + 2 ) d x = x 3 3 − 3 x 2 2 + 2 x + C \displaystyle \int f(x)dx=\int(x^2-3x+2)dx=\frac{x^3}{3}-\frac{3x^2}{2}+2x+C ∫f(x)dx=∫(x2−3x+2)dx=3x3−23x2+2x+C
- 需要导入sympy和scipy两个库
7,定积分
(1)公式
- 牛顿 - 莱布尼茨公式: ∫ a b f ( x ) d x = F ( x ) ∣ b a = F ( b ) − F ( a ) \displaystyle \int_a^bf(x)dx=F(x)\Bigg|{b \atop a}=F(b)-F(a) ∫abf(x)dx=F(x) ab=F(b)−F(a)
(2)示例
- 求 f ( x ) = x 2 − 3 x + 2 f(x)=x^2-3x+2 f(x)=x2−3x+2在区间 [ 1 , 2 ] [1,2] [1,2]上的定积分
- ∫ 1 2 f ( x ) d x = ∫ 1 2 ( x 2 − 3 x + 2 ) d x = ( x 3 3 − 3 x 2 2 + 2 x ) ∣ 2 1 = ( 8 3 − 6 + 4 ) − ( 1 3 − 3 2 + 2 ) = 2 3 − 5 6 = − 1 6 \displaystyle \int_1^2f(x)dx=\int_1^2(x^2-3x+2)dx=\left(\frac{x^3}{3}-\frac{3x^2}{2}+2x\right)\Bigg|{2 \atop 1}=\left(\frac{8}{3}-6+4\right)-\left(\frac{1}{3}-\frac{3}{2}+2\right)=\frac{2}{3}-\frac{5}{6}=-\frac{1}{6} ∫12f(x)dx=∫12(x2−3x+2)dx=(3x3−23x2+2x) 12=(38−6+4)−(31−23+2)=32−65=−61
(3)利用Python计算定积分
- 需要导入sympy和scipy两个库