- 博客(6)
- 收藏
- 关注
原创 Python学习:Ancode在Vcode中的使用
Anaconda 是一款面向数据科学、机器学习及深度学习领域的集成工具包,核心功能聚焦于环境隔离与包管理,可实现不同项目的 Python 版本及依赖包独立管理,自动解决包之间的版本兼容问题,无需手动配置依赖关系。
2025-12-14 22:14:32
947
原创 FUEL算法移植MID-360激光雷达、FAST_LIO
本文实现了FUEL算法从虚拟深度相机到激光雷达实机的部署。通过修改exploration.launch文件,将深度相机输入设为空值,并配置激光雷达话题/cloud_registered和里程计位姿信息。关键修改包括:1) 创建odom_to_pose节点转换FAST_LIO发布的/Odometry消息为PoseStamped格式;2) 调整map_ros.cpp中的点云处理回调函数;3) 更新launch文件参数,正确订阅激光雷达数据和位姿信息。最终通过分步启动livox驱动、FAST_LIO、RViz和探
2025-11-23 14:37:01
399
1
原创 FUEL安装教程
下面是安装和运行 FUEL(快速 UAV 探索框架)的步骤:好的,以下是之前 FUEL 安装步骤的整理,包含了必要的依赖安装、ROS 设置、以及如何运行仿真和实验。为了确保完整性,我将从基础设置到运行示例都逐步列出。更新系统并安装 ROS Noetic: 设置 ROS 环境变量: 安装常见的开发工具和依赖项: 2. 创建 ROS 工作空间 创建 ROS 工作空间并编译: 加载工作空间环境: 3. 安装 FUEL 所需依赖 安装
2025-11-23 13:59:10
908
原创 FUEL算法(1):TopologyPRM 算法学习
该init函数的作用是初始化算法所需的各种参数和对象。它从 ROS 参数服务器获取配置参数,并为路径规划过程中的各种计算(如随机采样、路径优化、环境分辨率等)做准备。通过该函数,系统能够根据环境的不同设置调整路径规划算法的行为,确保规划过程符合预期。该函数的主要功能是创建一个拓扑图,包括起点、终点和随机采样的中间节点,并根据可见性将这些节点相互连接。采样点通过评估环境的EDT(距离场)来判断是否有效,且只有当采样点不位于障碍物内时才会被接受。通过可见性判断来决定哪些节点应该相互连接,形成图的结构。
2025-11-22 14:53:19
602
原创 FUEL算法:节点整体框架
该程序主要的功能是基于传入的参数选择合适的轨迹规划算法,并初始化相应的状态机。在 ROS 系统中,这个节点可能用于无人机、自动驾驶汽车等需要根据不同需求动态选择不同轨迹规划策略的场景。通过 ROS 参数,用户可以灵活地选择不同的规划器,而无需修改代码。这个节点通过 ROS 初始化后,启动了一个名为的状态机,负责管理探索任务的执行。它的工作流程如下:初始化 ROS 节点和参数。创建并初始化对象,加载必要的配置。进入 ROS 的事件循环,等待并处理来自其他节点的消息和事件。
2025-11-22 14:53:04
719
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅