函数递归【C语言】

1. 什么是递归

递归是学习C语言函数绕不开的一个话题,那什么是递归呢?

递归其实是一种解决问题的方法,在C语言中,递归就是函数自己调用自己

写一个史上最简单的C语言递归代码:

#include <stdio.h>
int main()
{
	printf("hehe\n");
	main();//main函数中又调用了main函数
	return 0;
}

上述就是一个简单的递归程序,只不过上面的递归只是为了演示递归的基本形式,不是为了解决问题,代码最终也会陷入死递归,导致栈溢出(Stack overflow)。

在这里插入图片描述

1.1 递归的思想

把一个大型复杂问题层层转化为一个与原问题相似,但规模较小的子问题来求解;直到子问题不能再被拆分,递归就结束了。所以递归的思考方式就是把大事化小的过程。

递归中的递就是递推的意思,归就是回归的意思,接下来慢慢来体会。

1.2 递归的限制条件

递归在书写的时候,有2个必要条件:

  • 递归存在限制条件,当满足这个限制条件的时候,递归便不再继续。

  • 每次递归调用之后越来越接近这个限制条件。

在下面的例子中,我们逐步体会这2个限制条件。

2. 递归的举例

2.1 举例1:求n的阶乘

一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。

自然数n的阶乘写作n!。

题目:计算n的阶乘(不考虑溢出),n的阶乘就是1~n的数字累积相乘。

2.1.1 分析和代码实现

我们知道n的阶乘的公式: n! = n ∗ (n − 1)!

举例:
	5!= 5 * 4 * 3 * 2 * 1
	4!= 4 * 3 * 2 * 1
所以:5!= 5 * 4!

这样的思路就是把一个较大的问题,转换为一个与原问题相似,但规模较小的问题来求解的。

n==0的时候,n的阶乘是1,其余n的阶乘都是可以通过公式计算。

n的阶乘的递归公式如下:

在这里插入图片描述

那我们就可以写出函数Fact求n的阶乘,假设Fact(n)就是求n的阶乘,那么Fact(n-1)就是求n-1的阶乘,函数如下:

int Fact(int n)
{
	if (n == 0)
		return 1;
	else
		return n * Fact(n - 1);
}

测试:

#include <stdio.h>
int Fact(int n)
{
	if (n == 0)
		return 1;
	else
		return n * Fact(n - 1);
}
int main()
{
	int n = 0;
	scanf("%d", &n);
	int ret = Fact(n);
	printf("%d\n", ret);
	return 0;
}

运行结果如下(这里不考虑n太大的情况,n太大存在溢出):

在这里插入图片描述

2.1.2 画图推演

在这里插入图片描述

2.2 举例2:顺序打印一个整数的每一位

输入一个整数m,按照顺序打印整数的每一位。

比如:

输入:1234 输出:1 2 3 4

输入:520 输出:5 2 0

2.2.1 分析和代码实现

这个题目,放在我们面前,首先想到的是,怎么得到这个数的每一位呢?

如果n是一位数,n的每一位就是n自己。

n是超过一位数的话,就得拆分每一位。

分析如下:

1234%10就能得到4,然后1234/10得到123,这就相当于去掉了4,然后继续对123%10,就得到了3,再除10去掉3,以此类推,不断的%10/10操作,直到1234的每一位都得到;

但是这里有个问题就是数字是从后往前倒着得到的

但是我们有了灵感,我们发现其实⼀个数字的最低位是最容易得到的,通过%10就能得到。

那我们假设想写一个函数Print来打印n的每一位,如下表示:

Print(n)
如果n是1234,那表⽰为
Print(1234) //打印1234的每一位
    
其中1234中的4可以通过%10得到,那么
Print(1234)就可以拆分为两步:
1. Print(1234/10) //打印123的每一位
2. printf(1234%10) //打印4
完成上述2步,那就完成了1234每一位的打印
    
那么Print(123)又可以拆分为Print(123/10) + printf(123%10)

以此类推下去,就有

   Print(1234)
==>Print(123)                       + printf(4)
==>Print(12)            + printf(3)
==>Print(1) + printf(2)
==>printf(1)

直到被打印的数字变成一位数的时候,就不需要再拆分,递归结束。

那么代码完成也就比较清楚:

void Print(int n)
{
	if (n > 9)
	{
		Print(n / 10);
	}
	printf("%d ", n % 10);
}
int main()
{
	int m = 0;
	scanf("%d", &m);
	Print(m);
	return 0;
}

输入和输出结果:

在这里插入图片描述

在这个解题的过程中,我们就是使用了大事化小的思路。

Print(1234)打印1234每一位,拆解为首先Print(123)打印123的每一位,再打印得到的4。

Print(123)打印123每一位,拆解为首先Print(12)打印12的每一位,再打印得到的3。

直到Print打印的是一位数,直接打印就行。

2.2.2 画图推演

以1234每一位的打印来推演一下

在这里插入图片描述

3. 递归与迭代

递归是一种很好的编程技巧,但是和很多技巧一样,也是可能被误用的,就像举例1一样,看到推导的公式,很容易就被写成递归的形式:

在这里插入图片描述

int Fact(int n)
{
	if (n == 0)
		return 1;
	else
		return n * Fact(n - 1);
}

Fact函数是可以产生正确的结果,但是在递归函数调用的过程中涉及一些运行时的开销。

在C语言中每一次函数调用,都需要为本次函数调用在内存的栈区,申请一块内存空间来保存函数调用期间的各种局部变量的值,这块空间被称为运行时堆栈,或者函数栈帧

函数不返回,函数对应的栈帧空间就一直占用,所以如果函数调用中存在递归调用的话,每一次递归函数调用都会开辟属于自己的栈帧空间,直到函数递归不再继续,开始回归,才逐层释放栈帧空间

所以如果采用函数递归的方式式完成代码,递归层次太深,就会浪费太多的栈帧空间,也可能引起栈溢出(stack overflow)的问题。

所以如果不想使用递归,就得想其他的办法,通常就是迭代的方式(通常就是循环的方式)。

比如:计算n的阶乘,也是可以产生1~n的数字累计乘在一起的。

int Fact(int n)
{
	int i = 0;
	int ret = 1;
	for (i = 1; i <= n; i++)
	{
		ret *= i;
	}
	return ret;
}

上述代码是能够完成任务,并且效率是比递归的方式更好的。

事实上,我们看到的许多问题是以递归的形式进行解释的,这只是因为它比非递归的形式更加清晰,但是这些问题的迭代实现往往比递归实现效率更高。

当一个问题非常复杂,难以使用迭代的方式实现时,此时递归实现的简洁性便可以补偿它所带来的运行时开销。

举例3:求第n个斐波那契数

我们也能举出更加极端的例子,就像计算第n个斐波那契数,是不适合使用递归求解的,但是斐波那契数的问题通过是使用递归的形式描述的,如下:

在这里插入图片描述

看到这公式,很容易诱导我们将代码写成递归的形式,如下所示:

int Fib(int n)
{
	if (n <= 2)
		return 1;
	else
		return Fib(n - 1) + Fib(n - 2);
}

测试代码:

#include <stdio.h>
int main()
{
	int n = 0;
	scanf("%d", &n);
	int ret = Fib(n);
	printf("%d\n", ret);
	return 0;
}

当我们n输入为50的时候,需要很长时间才能算出结果,这个计算所花费的时间,是我们很难接受的,这也说明递归的写法是非常低效的,那是为什么呢?

在这里插入图片描述

其实递归程序会不断的展开,在展开的过程中,我们很容易就能发现,在递归的过程中会有重复计算,而且递归层次越深,冗余计算就会越多。我们可以做下测试:

#include <stdio.h>
int count = 0;
int Fib(int n)
{
	if (n == 3)
		count++;//统计第3个斐波那契数被计算的次数
	if (n <= 2)
		return 1;
	else
		return Fib(n - 1) + Fib(n - 2);
}
int main()
{
	int n = 0;
	scanf("%d", &n);
	int ret = Fib(n);
	printf("%d\n", ret);
	printf("\ncount = %d\n", count);
	return 0;
}

输出结果:

在这里插入图片描述

这里我们看到了,在计算第40个斐波那契数的时候,使用递归方式,第3个斐波那契数就被重复计算了39088169次,这些计算是非常冗余的。所以斐波那契数的计算,使用递归是非常不明智的,我们就得想迭代的方式解决。

我们知道斐波那契数的前2个数都1,然后前2个数相加就是第3个数,那么我们从前往后,从小到大计算就行了。

这样就有下⾯的代码:

int Fib(int n)
{
	int a = 1;
	int b = 1;
	int c = 1;
	while (n > 2)
	{
		c = a + b;
		a = b;
		b = c;
		n--;
	}
	return c;
}

迭代的方式去实现这个代码,效率就要高出很多了。

忠告:有时候,递归虽好,但是也会引入一些问题,所以我们一定不要迷恋递归,适可而止就好。

拓展学习:

  • 青蛙跳台阶问题

  • 汉诺塔问题

以上2个问题都可以使用递归很好的解决,有兴趣可以自己研究一下。

评论 52
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值