Datawhale AI 夏令营 第二期——基于术语词典干预的机器翻译挑战赛-笔记3

NLP竞赛:基于术语词典干预的机器翻译挑战赛

1. Transformer架构の介绍

Transformer是一种深度学习模型,最初由Vaswani等人在2017年的论文《Attention Is All You Need》中提出。该模型在自然语言处理(NLP)领域特别流行,因为它摒弃了循环神经网络(RNN)和卷积神经网络(CNN),完全基于注意力机制,使得模型在处理序列数据时更加高效和有效。

核心组件

        1 编码器:由多个自注意力层和前馈网络层组成,每个子层之间使用残差连接和层归一化。

        2 解码器:同样由多个层组成,但包含三个子层:掩码自注意力、编码器-解码器注意力和前馈网络。掩码自注意力确保在解码过程中只能看到当前位置之前的输出。

关键机制

        1 自注意力:允许模型在序列内的任意位置间直接建立依赖,更好地理解数据的上下文关系。

        2 多头注意力:模型会同时学习数据的不同表示,每个“头”关注序列的不同部分,以捕获多种不同级别的依赖关系。

        3 位置编码:由于Transformer不使用循环结构,因此需要位置编码来提供单词在序列中的位置信息。

2. Transformer在机器翻译上の应用及代码示例
应用概述

Transformer模型在机器翻译领域取得了突破性进展,成为当前最主流的机器翻译模型之一。其通过高效的自注意力机制和并行计算能力,能够准确捕捉源语言和目标语言之间的全局依赖关系,生成高质量的翻译结果。

代码の示例

以下是一个简化的Transformer模型在机器翻译任务中的代码示例,主要涉及自注意力机制和位置编码的实现。

import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0.1):
super(MultiHeadedAttention, self).__init__()
assert d_model % h == 0
self.d_k = d_model // h
self.h = h
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
if mask is not None:
mask = mask.unsqueeze(1)
nbatches = query.size(0)
query, key, value = [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))]
x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout)
x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k)
return self.linears[-1](x)
def attention(query, key, value, mask=None, dropout=None):
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
# Helper function to clone layers
def clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
其他の事项
  • 上述代码仅展示了Transformer模型中的自注意力机制和位置编码的部分实现,完整的Transformer模型还包括编码器、解码器、前馈网络等其他组件。
  • 在实际应用中,通常需要使用预训练的模型和数据集,并通过微调(Fine-tuning)来适应特定的机器翻译任务。
  • 在处理术语词典干预的机器翻译时,还需要在模型中加入术语词典的干预机制,以提高术语翻译的准确性和一致性。

希望这份笔记能够帮助你更好地理解和应用Transformer模型在机器翻译任务中哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值