趣学贝叶斯统计:条件概率(1)

前言

到目前为止,我们只讨论了独立事件的概率。当一个事件的结果不影响另一个事件的结果时,这两个事件就是独立事件。例如,掷硬币时出现正面并不影响掷骰子是否会掷出6点。计算独立事件的概率要比计算非独立事件的概率容易得多,但独立事件往往并不能反映现实生活。例如,闹钟不响和上班迟到就不是独立事件。如果闹钟没有响,你上班迟到的可能性就要比其他时候大得多。

在本章中,你将学习如何分析条件概率,即事件的概率不是独立的,而是取决于特定事件的结果。此外,我还将介绍条件概率最重要的应用之一:贝叶斯定理。

一、条件概率

通常,人们患上GBS的概率为2/100 000。
如果你在那一年接种了流感疫苗,患上GBS的概率就会上升到3/100 000
P(患上GBS|接种流感疫苗)= 3 10000 \frac{3} {10000} 100003

1. 为什么条件概率很重要

条件概率是统计学的重要组成部分,因为它使我们能够证明信息是如何改变信念的。
P ( G B S |接种流感疫苗 ) P ( G B S ) = 1.5 \frac{P(GBS|接种流感疫苗)} {P(GBS)}=1.5 P(GBS)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值