题目描述
平面上有 N 条直线,其中第 i 条直线是 y = Ai x + Bi 。
请计算这些直线将平面分成了几个部分。
输入描述
第一行包含一个整数 N。
以下 N 行,每行包含两个整数 Ai, Bi。
其中,1≤N≤1000,−10^5 ≤ Ai,Bi ≤ 1^05。
输出描述
一个整数代表答案。
输入输出样例
示例
输入:
3
1 1
2 2
3 3
输出
6
思路:当新增一条直线,这条直线和之前的直线的交点个数加一就是新增的面的个数,需要注意的是,如果有交点重合,就算作一个交点,所以我们要对交点,进行筛查,有重复的,按照一个算,所以我们把交点存进一个数组中,然后对数组进行筛选,在累加结果
#include <stdio.h>
int f(int a,int b){//将两个数字组合成一个数字,这里将交点的两个坐标组合成一个数字,方便判断是否为同一个交点
int i=b,j,sum=0,m,n=0,num[100];
while(i>0){
num[n]=i%10;
i/=10;
n++;
}
while(n-1>=0){
a=a*10+num[n-1];
n--;
}
return a;
}
int g(int num[],int n){//将一个数组去掉重复的元素,返回剩下元素的个数
int i,j,m;
for(i=0;i<n-1;i++){
for(j=i+1;j<n;j++){
if(num[i]==num[j]){
for(m=j;m<n-1;m++){
num[m]=num[m+1];
}
n--;
j--;
}
}
}
return n;
}
int main(){
int n,m=0,j,i,sum=1;
scanf("%d",&n);
int k[n],b[n],dp[n],x[n],y[n];
for(i=0;i<n;i++){
scanf("%d%d",&k[i],&b[i]);
}
for(i=0;i<n;i++){
m=0;
for(j=0;j<i;j++){
if(k[i]*k[i]-b[i]*b[i]+2*b[i]*b[j]==b[j]*b[j]-k[j]*k[j]+2*k[j]*k[i]){//判断是否有交点
x[m]=(b[i]-b[j])/(k[j]-k[i]);//交点x的坐标
y[m]=k[i]*x[m]+b[i];//交点y的坐标
dp[m]=f(x[m],y[m]);//组合起来
m++;
}
}
int x=g(dp,m);//实际去掉重复的交点剩下的
x=x+1;//再加上1
sum+=x;//在统计到sum
}
printf("%d",sum);//打印sum
return 0;
}//此代码有一个缺陷 ,不能输入同一条直线