数论专题学习

1——欧几里得算法

两个整数a,b(a>=b)的最大公约数集合与a mod b和b的公约数集合相同,可得gcd(a,

b)=gcd(b,a mod b)

//计算最大公约数,又称辗转相除法
int gcd(int a,int b)
{
if(b==0)return a;
else return gcd(b,a%b);
}

int gcd(int a,int b)
{
return (b==0)?a:gcd(b,a%b);
}
2——解线性方程(欧几里得扩展法解方程)

ax+bx=gcd(a,b)

扩展欧几里得算法

int extend_gcd(int a,int b,int &x,int &y)
{
if(b==0)
{
x=1;y=0;
return a;
}else
{
int ret=extend_gcd(b,a%b,y,x);
y-=x*(a/b);
return ret;
}
}

使用扩展欧几里得算法求解逆元

int inverse(int a,int b){
int x,y;
extend_gcd(a,b,x,y);
return x;
}

使用欧拉定理求逆元

int power_mod(int a,int b,int n)
{
int ret=1;
while(b){
if(b&1)ret=(long long)ret*a%n;
a=(long long)a*a%n;
b>>=1;
}
return ret;
}

线性求逆元:递推法

线性求逆元:倒推法

模板 

#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int ex_gcd(int aa, int bb, int& xx, int& yy)//递归
{
    if (bb == 0) { xx = 1; yy = 0; return aa; }
    int ans = ex_gcd(bb, aa % bb, xx, yy);
    int temp = xx;
    xx = yy;
    yy = temp - aa / bb * yy;
    return ans;
}
int main()
{
    int a, b, c;
    scanf_s("%d%d%d", &a, &b, &c);
    int x, y;//求第一个特解
    int res = ex_gcd(a, b, x, y);
    if (c % res)printf("Impossible\n");
    else {
        int x0 = x * c / res;//求第二个特解
        int y0 = y * c / res;
        int L = b / res;
        if (L < 0)L = -L;
        int X = (x0 % L + L) % L;//求x通解里的最小正整数
        int Y = (c - a * X) / b;
        printf("x最小正整数解时 :  x = %d,y = %d\n", X, Y);
    }
    return 0;
}
#include <iostream>  
#include <cstdio>  
using namespace std;  
  
int ex_gcd(int aa, int bb, int& xx, int& yy) {  
    if (bb == 0) { xx = 1; yy = 0; return aa; }  
    int ans = ex_gcd(bb, aa % bb, xx, yy);  
    int temp = xx;  
    xx = yy;  
    yy = temp - aa / bb * yy;  
    return ans;  
}  
  
int main() {  
    int a, b, c;  
    scanf("%d%d%d", &a, &b, &c);  
    int x, y;  
    int res = ex_gcd(a, b, x, y);  
    if (res == 0 && c != 0) {  
        printf("Impossible\n");  
    } else {  
        int t = c / res;  
        int x0 = x * t;  
        int y0 = y * t;  
          
        // 找到x的最小正整数解  
        int L = abs(b / res);  
        x0 = (x0 % L + L) % L;  
          
        // 使用x的解来计算y的解  
        int Y = (c - a * x0) / b;  
          
        printf("x最小正整数解时 :  x = %d, y = %d\n", x0, Y);  
    }  
    return 0;  
}

扩展gcd代码实现

#include<iostream>
using namespace std;
typedef long long ll;
ll ex_gcd(ll a, ll b, ll& x, ll& y)
{
	ll GCD, t;
	if (!b) {
		x = 1; y = 0;
		return a;
	}
	GCD = ex_gcd(b, a % b, x, y);
	t = x;
	x = y;
	t - (a / b) * y;//回溯
}
ll inv(int a, int mod)//求a模mod的逆元
{
	ll x, y;
	ll GCD = ex_gcd(a, mod, x, y) % mod;
	return GCD ? (x % mod + mod) % mod : -1;
}
ll solve_ex_gcd(ll a, ll b, ll c, ll& x, ll& y)//求解
{
	ll d = ex_gcd(a, b, x, y);
	if (c % d != 0) {//无整数解
		x = -1;
		y = -1;
		return -1;
	}
	x *= (c / d);
	b = abs(b / d);
	while (x < 0) {
		x += b;
	}
	y = (c - a * x) / b;
	return 0;
}

int main()
{
	ll x, y, a, b, c;
	cin >> a >> b >> c;
	solve_ex_gcd(a, b, c, x, y);
	cout << x << endl;
	return 0;
}
3——因式分解与算术基本定理

1、p是素数,p|ab,则p|a或p|b或者p|a且p|b

2、每个整数n>=2可唯一分解成素数乘积

3、要将n表示素数乘积,用小于等于sqrt(n)的每个数试除它,如果没有求得整除n的整数,则n本身是素数,否则求得的第一个数是素数p,分解n=mp,对m重复这个过程

素数判定

//判定素数
#include<iostream>
using namespace std;
bool isPrime(int a) {
	if (a < 2)return 0;
	for (int i = 2; i * i <= a; i++)
	{
		if (a % i == 0)return 0;
	}
	return 1;
}

4——同余方程

a=b(mod m)

m|(a-b)

a+a1=b+b(mod m)(条件:gcd(a,b)=1)

ac=bc(mod m)

#include<iostream>
using namespace std;
int ex_gcd(int a, int b, int& x, int& y)
{
	if (b == 0) {
		x = 1;
		y = 0;
		return a;
	}
	int d = ex_gcd(b, a % b, x, y);
	int temp = x;
	x = y;
	y = temp - a / b * y;
	return d;
}
bool liEu(int a, int b, int c, int& x, int& y)
{
	int d = ex_gcd(a, b, x, y);
	if (c % d != 0)return 0;//无解
	int k = c / d;
	x *= k;
	y *= k; 
 // 通过扩展欧几里得算法得到的x, y可能不是最小正整数解,需要调整  
 x = (x % (b / d) + (b / d)) % (b / d); // 保证x是非负且小于b/d  
	return 1;
}
5——费马小定理和欧拉函数

p is prime,a!=0(mod p)

->a^(p-1)=1(mod 23)

//类似于分解质因数,计算答案即可。
//参考代码 (时间复杂度 O(n)):
int phi(int x) {
int res = x;
for (int i = 2; i * i <= x; i ++) {
if (x % i == 0) {
res = res / i * (i - 1);
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
res = res / x * (x - 1);
}
  1. 初始化 res 为 x,因为如果没有任何因子能整除 x(即 x 是质数),那么 phi(x) = x - 1

  2. 遍历从 2 到 sqrt(x) 的所有整数 i。对于每个 i,检查 x 是否能被 i 整除。

  3. 如果 x 能被 i 整除,那么 i 是 x 的一个质因子。根据欧拉函数的性质,phi(x) 需要除以 i 并乘以 i-1,因为对于 x 的每一个 i 的倍数(除了 i 本身),它都不能与 x 互质。然后,通过循环不断除以 i,直到 x 不再能被 i 整除,以确保我们处理了 x 中所有 i 的因子。

  4. 循环结束后,如果 x 大于 1,说明 x 是一个质数(因为它没有被之前的任何 i 整除)。此时,我们需要将 res 除以 x 并乘以 x-1,因为此时 x 的所有小于它的正整数(除了 1 和 x 本身)都与其互质。

  5. 函数返回 res,即 phi(x) 的值。

6——中国剩余定理
#include<iostream>
using namespace std;
//扩展gcd
int ex_gcd(int a, int b, int& x, int& y)
{
	if (b == 0) {
		x = 1; y = 0; return a;
	}
	int d = ex_gcd(b, a % b, x, y);
	int t = x;
	x = y;
	y = t - a / b * y;
	return d;
}

//利用ec_gcd求逆元
int inv(int a, int b) {
	int x, y;
	ex_gcd(a, b, x, y);
	return x;
}

//Chinese Remainder Theorem
int CRT(const int a[], const int m[], int n)
{
	int M = 1, ret = 0;
	for (int i = 1; i <= n; i++)M *= m[i];
	for (int i = 1; i <= n; i++) {
		int Mi = M / m[i], ti = inv(Mi, m[i]);
		 ret=(ret + a[i] * Mi * ti) % M;
	}
	return ret;
}

7——欧拉公式 

8——素数

9——素数计数

10——幂模m与逐次平方(快速幂)

a^b

//递归法求a^b
long long binpow(long long a, long long b)
{
	if (b == 0)return 1;
	long long res = binpow(a, b / 2);
	if (b & 1) return res * a;
	else
		return res * res * a;
}

//非递归法
long long binpow(long long a, long long b)
{
	 long long res = 1;
	while (b)
	{
		if (b & 1)res *= a;
		a *= a;
		b >>= 1;
	}
	return res;
}

a^b(mod p)

long long binpow(long long a, long long b,long long p)
{
	 long long res = 1;
	 a = a % p;
	while (b)
	{
		if (b & 1)res = res * a % p;
		a=a*a%p;
		b >>= 1;
	}
	return res;
}
11——计算模m的k次根

#include<iostream>  
#include<vector>  
#include<cmath>  
using namespace std;

// 扩欧求逆元  
int ex_gcd(int a, int b, int& u, int& v) {
    if (b == 0) {
        u = 1; v = 0; return a;
    }
    int d = ex_gcd(b, a % b, u, v);
    int t = u;
    u = v;
    v = t - a / b * v;
    return d;
}

int inv(int a, int b) {
    int x, y;
    int g = ex_gcd(a, b, x, y);
    if (g != 1) return -1; // 如果a和b不互质,则返回-1或抛出异常  
    x = (x % b + b) % b; // 保证x是正数  
    return x;
}

// 求m的欧拉函数  
int phi(int m) {
    int phi_m = m;
    for (int i = 2; i * i <= m; i++) {
        if (m % i == 0) {
            phi_m = phi_m / i * (i - 1);
            while (m % i == 0) m /= i;
        }
    }
    if (m > 1) phi_m = phi_m / m * (m - 1); // 处理m本身是一个质数的情况  
    return phi_m;
}

// 求b^k(mod m)  
int binpow(int a, int b, int p) {
    int res = 1;
    a %= p;
    while (b) {
        if (b & 1) res = res * a % p;
        a = a * a % p;
        b >>= 1;
    }
    return res;
}

int main() {
    int k, m, b, x, y;
    cin >> k >> b >> m;
    // 求m的欧拉函数  
    int phi_m = phi(m);
    cout << "phi(" << m << ") = " << phi_m << '\n';

    // 检查k和phi_m是否互质  
    if (ex_gcd(k, phi_m, x,y ) != 1) {
        cout << "k和phi(m)不互质,无法找到逆元。\n";
        return 1;
    }

    // 求ku=1(mod phi_m)的解即求k(mod phi_m)的逆元  
    int u = inv(k, phi_m);
    cout << "k关于phi(" << m << ")的逆元为: " << u << '\n';

    // 求b^u(mod m)  
    x = binpow(b, u, m);
    cout << "x^k=b(mod m)的根为: " << x << '\n';
    return 0;
}
12——矩阵快速幂

#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
typedef long long ll;
using namespace std;

const ll p = 1e9 + 7;
struct mat {
	ll c[101][101];
}A, res;
ll n, k;
mat mul(mat& a, mat &b)//矩阵乘法
{
	mat t;//临时矩阵
	memset(t.c, 0, sizeof(t.c));
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= n; j++)
		{
			for (int k = 1; k <= n; k++)
			{
				t.c[i][j] = (t.c[i][j] + a.c[i][k] * b.c[k][j]) % p;
			}
		}
	}
	return t;
}
void quickpow(ll k)//快速幂
{
	for (int i = 1; i <= n; i++)res.c[i][i] = 1;
	while (k)
	{
		if (k & 1)res = mul(res, A);
		A = mul(A, A);
		k >>= 1;
	}
}

int main()
{
	cin >> n >> k;
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= n; j++)
			cin >> A.c[i][j];
	quickpow(k);
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= n; j++)
			cout << res.c[i][j] << ' ';
		cout << '\n';
	}
	return 0;
}
13——模p平方剩余
14——1-模p平方剩余

15——2模p平方剩余

16——二次互反律

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值