1 第一章:数据加载
1.1 载入数据
数据集下载 https://www.kaggle.com/c/titanic/overview
1.1.1 任务一:导入numpy和pandas
# 引入环境
import pandas as pd
import numpy as np
【提示】如果加载失败,学会如何在你的python环境下安装numpy和pandas这两个库
1.1.2 任务二:载入数据
(1) 使用相对路径载入数据
df =pd.read_csv('./train.csv')
df
(2) 使用绝对路径载入数据
df =pd.read_csv(r'D:\Users\LENOVO\Desktop\pandas入门\train.csv')
df
【提示】相对路径载入报错时,尝试使用os.getcwd()查看当前工作目录。
【思考】知道数据加载的方法后,试试pd.read_csv()和pd.read_table()的不同,如果想让他们效果一样,需要怎么做?了解一下'.tsv'和'.csv'的不同,如何加载这两个数据集?
【回答】
不同:都是Pandas库中用于读取文本文件的函数,它们主要的区别在于默认的分隔符:read_table是以制表符 \t 作为数据的标志,也就是以行为单位进行存储,每一行字符串为一列;read_csv默认分隔符为逗号,每一个字符串为一列
效果一样:如果想让pd.read_csv()和pd.read_table()的效果一样,可以通过指定sep参数来实现。 pd.read_csv('filename.tsv', sep='\t')实现用pd.read_csv()来读取一个制表符分隔的文件;pd.read_table('filename.csv', sep=',')实现用pd.read_table() 来读取一个逗号分隔的文件
【总结】加载的数据是所有工作的第一步,我们的工作会接触到不同的数据格式(eg:.csv;.tsv;.xlsx),但是加载的方法和思路都是一样的,在以后工作和做项目的过程中,遇到之前没有碰到的问题,要多多查资料吗,使用google,了解业务逻辑,明白输入和输出是什么。
1.1.3 任务三:每1000行为一个数据模块,逐块读取
【思考】什么是逐块读取?为什么要逐块读取呢?
有chunksize参数可以进行逐块加载。它的本质就是将文本分成若干块,每次处理chunksize行的数据,最终返回一个TextParser对象,对该对象进行迭代遍历,可以完成逐块统计的合并处理。
【提示】大家可以chunker(数据块)是什么类型?用`for`循环打印出来出处具体的样子是什么?
1.1.4 任务四:将表头改成中文,索引改为乘客ID [对于某些英文资料,我们可以通过翻译来更直观的熟悉我们的数据]
PassengerId => 乘客ID
Survived => 是否幸存
Pclass =>