pta求组合数

本题要求编写程序,根据公式Cnm​=m!(n−m)!n!​算出从n个不同元素中取出m个元素(m≤n)的组合数。

建议定义和调用函数fact(n)计算n!,其中n的类型是int,函数类型是double

输入格式:

输入在一行中给出两个正整数m和n(m≤n),以空格分隔。

输出格式:

按照格式“result = 组合数计算结果”输出。题目保证结果在double类型范围内。

输入样例:

2 7

输出样例:

result = 21

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

#include<iostream>
using namespace std;
long fact(int n)
{
    int i;
    long p=1;
    for(i=1;i<=n;i++)
        p=p*i;
    return p;
}
long comb(int m,int n)
{
    return fact(n)/(fact(m)*fact(n-m));
}
int main()
{
    int m,n;
    cin>>m>>n;
    cout<<"result = "<<comb(m,n)<<endl;
    return 0;
}

### 使用递归方法计算组合数 #### 组合数定义与性质 组合数 \( C(n, k) \),也称为二项式系数,表示从 n 个不同元素中取出 k 个元素的方案总数。其数学表达式为: \[ C(n, k) = \frac{n!}{k!(n-k)!} \] 其中 ! 表示阶乘运算。 为了提高效率并减少重复计算,在实际编程过程中通常采用递推公式来组合数[^1]。 #### 递归算法思路 当面对较大数值范围内的组合数计算时,直接利用上述公式的除法操作可能会遇到精度损失的问题;而通过构建递归函数,则能够有效规避这一风险。具体来说,可以通过以下两种情况来进行分治处理: - 如果 `k` 小于等于零或者大于等于 `n` ,则返回特定值; - 否则调用自身两次分别代表选取当前位和不选当前位置的情况,并累加两者的结果作为最终答案。 #### Python 实现代码 下面给出一段基于以上逻辑编写的Python版本程序用于解决这个问题: ```python def comb(n, k): if k == 0 or k == n: return 1 elif k > n: return 0 else: return comb(n - 1, k) if __name__ == "__main__": import sys input_data = list(map(int, sys.stdin.readline().strip().split())) n, k = input_data[:2] result = comb(n, k) print(result) ``` 这段代码实现了基本的功能需,即读取标准输入中的两个正整数参数 `n`, `k` 并输出对应的组合数值。需要注意的是此实现方式虽然直观易懂但在性能方面存在不足之处——大量重叠子问题被反复解造成时间开销过大。因此建议读者进一步学习记忆化搜索或动态规划优化技巧以提升算法效率[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值