Datawhale AI x 魔搭 夏令营第四期 魔搭-大模型应用开发方向 task04笔记

1.引言

1.1 大模型微调技术简介

大模型微调是指在已经预训练好的大型语言模型基础上,使用特定的数据集进行进一步的训练,以使模型适应特定任务或领域

模型微调也被称为指令微调(Instruction Tuning)或者有监督微调(Supervised Fine-tuning, SFT),该方法利用成对的任务输入与预期输出数据,训练模型学会以问答的形式解答问题,从而解锁其任务解决潜能。经过指令微调后,大语言模型能够展现出较强的指令遵循能力,可以通过零样本学习的方式解决多种下游任务。

然而,值得注意的是,指令微调并非无中生有地传授新知,而是更多地扮演着催化剂的角色,激活模型内在的潜在能力,而非单纯地灌输信息。

相较于预训练所需的海量数据,指令微调所需数据量显著减少,从几十万到上百万条不等的数据,均可有效激发模型的通用任务解决能力,甚至有研究表明,少量高质量的指令数据(数千至数万条)亦能实现令人满意的微调效果。这不仅降低了对计算资源的依赖,也提升了微调的灵活性与效率。

1.2 轻量化微调技术简介

然而,由于大模型的参数量巨大, 进行全量参数微调需要消耗非常多的算力。为了解决这一问题,研究者提出了参数高效微调(Parameter-efficient Fine-tuning),也称为轻量化微调(Lightweight Fine-tuning),这些方法通过训练极少的模型参数,同时保证微调后的模型表现可以与全量微调相媲美。

常用的轻量化微调技术有LoRA、Adapter 和 Prompt Tuning。

1.3 LoRA技术简介(以下内容来自他人,保护知识产权,有需要可以直接点击下方)大语言模型微调实践——LoRA 微调细节_lora微调原理-CSDN博客

LoRA 基于大模型的内在低秩特性,增加旁路矩阵来模拟全参数微调,是目前最通用、效果最好的微调方法之一,而且能和其它参数高效微调方法有效结合。利用该方法对 175B GPT-3 微调,需要训练更新的参数量可以小到全量微调参数量的 0.01%。

上图为 LoRA 的实现原理,其实现流程为:

在原始预训练语言模型旁边增加一个旁路,做降维再升维的操作来模拟内在秩;

用随机高斯分布初始化 A,用零矩阵初始化B,训练时固定预训练模型的参数,只训练矩阵 A 与矩阵 B ;

训练完成后,将 B 矩阵与 A 矩阵相乘后合并预训练模型参数作为微调后的模型参数。

研究表明,Transformer 等神经网络包含许多执行矩阵乘法的密集层,这些权重通常具有满秩。预训练的语言模型具有较低的“本征维度(Instrinsic Dimension)”,并且可以和完整参数空间一样进行有效学习。受此启发,本文在微调过程中假设权重的更新也具有较低的“本征维度”。对于预训练模型的权重矩阵 ,通过低秩分解(Low-Rank Decomposition)来表示约束其更新。训练过程中 被固定不再进行梯度更新,只训练 和 ,其中 。训练结束后,更新参数为 。对于输入 ,模型的前向传播过程更新为 。

由于模型整体参数量不变,所以不会降低推理时的性能。作者通过实验比较了在内容理解任务、生成任务上的效果,相比全量微调参数量显著降低,性能上持平甚至超过,相比其他高效微调方法,增加参数量不会导致性能下降。需要注意的是此方法对低秩矩阵的秩数和目标模块的选择比较敏感,可能影响模型的性能和稳定性。使用LoRA微调有以下几个细节:

  1. 对哪些参数进行微调:基于 Transformer 结构,LoRA 只对每层的 Self-Attention 的部分进行微调,有 四个映射层参数可以进行微调。需要注意不同模型参数名称不同,像 StarCoder 模型 Multi-query 结构的 attention 层对应的参数名称是 attn.c_attn, attn.c_proj
  2. Rank® 的选取:Rank 的取值作者对比了 1-64,效果上 Rank 在 4-8 之间最好,再高并没有效果提升。不过论文的实验是面向下游单一监督任务的,因此在指令微调上根据指令分布的广度,Rank选择还是需要在 8 以上的取值进行测试。
  3. alpha 参数选取:alpha 其实是个缩放参数,训练后权重 merge 时的比例为 alpha/r
  4. 初始化:矩阵A是 Uniform 初始化,B 是零初始化,这样最初的 lora 权重为 0,所以 lora 参数是从头学起,并没有那么容易收敛。

2.实践环节 

我们将进行 源2.0-2B 微调实战,我们使用一个简历命名实体识别的数据集进行微调,进而开发一个AI简历助手,进而可以批量地自动识别并提取简历中的关键信息(如姓名、教育背景、工作经历等),提升简历处理的效率。

具体来说,输入一个摘录自某简历的句子,模型需要识别出所有的命名实体。实体的类别包括:姓名(NAME)、国籍(CONT)、种族(RACE)、职位(TITLE)、教育背景(EDU)、专业(PRO)、组织名(ORG)、地名(LOC)。原始的数据来自于BAAI/COIG-PC-Lite

前面创建啥的重复好几遍了就不给大家在演示了,直接进入面板开始操作

还是一如既往要用到的东西下载:

git lfs install git clone https://www.modelscope.cn/datasets/Datawhale/AICamp_yuan_baseline.git cp AICamp_yuan_baseline/Task\ 4:源大模型微调实战/* .

(代码部分)

下载执行模型

余下的就是按照布置一步一步实现,也不赘述了。

(提一嘴有时候碰到这样的问题大伙怎么处理,内存不够了吗?)

最后就变成实现成这样:

总结:

实话实说,做的实在辣鸡,但没法子,很多东西自己没法很好的理解,但总归是了解了很多,在团队中暂时没法做出很大的贡献,但还是要尽自己的权力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值