数列求和
问题描述
有一分数序列:
2/1,3/2,5/3,8/5,13/8,21/13,......An/Bn
A1=2,A2=3,An=An-1+An-2;
B1=1,B2=2,Bn=Bn-1+Bn-2。
求出这个数列的前n(2<=n<=30)项之和。
输入说明
一个整数n
输出说明
输出一个实数表示数列前n项之和,结果保留2位小数(四舍五入)
输入样例
2
输出样例
3.50
#include <stdio.h>
int main()
{
int n=0,i=0;
float A1=2,A2=3,B1=1,B2=2,A=0,B=0,sum=0;
scanf("%d",&n);
float arr[30]={0};
arr[0]=A1/B1;
arr[1]=A2/B2;
for(i=2;i<30;i++)
{
A=A1+A2;
A1=A2;
A2=A;
B=B1+B2;
B1=B2;
B2=B;
//这里用到了斐波那契数列相关求和技巧
arr[i]= A/B;
}
for(i=0;i<n;i++)
{
sum=sum+arr[i];
}
printf("%.2f",sum);
return 0;
}
字符串筛选
编写函数fun,其功能是将字符串s下标为奇数的字符删除,字符串中剩余字符形成的新字符串放在数组t中。
主函数中输入字符串s,调用函数,输出字符数组t。
输入说明:共一行,输入字符串s
输出说明:共一行,输出字符串t
输入示例:abcd1234
输出示例:ac13
#include <stdio.h>
#include <string.h>
int main()
{
char word[100];
gets(word);
int i=0;
int n=strlen(word);
for(i=0;i<n;i++)
{
if(i%2==0)
{
printf("%c",word[i]);
}
}
return 0;
}
水仙花数
问题描述
水仙花数是指一个 n 位数 ( n≥3 ),它的每个位上的数字的 n 次幂之和等于它本身。
(例如:1^3 + 5^3 + 3^3 = 153)。
定义一个函数int function(int a, int b),计算区间[a,b]或区间[b,a]上水仙花数的个数。
输入说明
输入由两个整数a和b构成,a和b之间用空格分隔。0<a,b<10000
输出说明
输出区间[a,b]或区间[b,a]上水仙花数的个数。
输入样例
3 1000
输出样例
4
提示
a,b的位数n可能小于3
#include <stdio.h>
#include <math.h>
int function(int x)
{
int d=1,i=0,sum=0;
int x1=x,X=x;
for(;x1>=10;)
{
x1/=10;
d++;
}
int arr[d]={0};
for(i=0;i<d;i++)
{
arr[i]=x%10;
x/=10;
}
for(i=0;i<d;i++)
{
sum=sum+pow(arr[i],d);
}
if(sum==X)
return 1;
else
return 0;
}
int main()
{
int a=0,b=0,i=0,a1=0,b1=0,da=1,db=1,count=0;
scanf("%d%d",&a,&b);
a1=a;
b1=b;
for(;a1>=10;)
{
a1/=10;
da++;
}
for(;b1>=10;)
{
b1/=10;
db++;
}
if(db<3)
{
;
}
else if(da<3 && db>=3)
{
for(i=100;i<=b;i++)
{
if(function(i)==1)
{
count++;
}
}
}
else if(da>=3 && db>=3)
{
for(i=a;i<=b;i++)
{
if(function(i)==1)
{
count++;
}
}
}
printf("%d",count);
return 0;
}
递归数列
问题描述
一个数列A定义如下
A(1)=1,
A(2)=1/(1+A(1)),
A(3)=1/(1+A(2)),
……
A(n)=1/(1+A(n-1))。
定义一个函数function用来计算数列的第第n项的值,函数声明如下:
double function(int n);
输入说明:
输入为1个正整数n,n<=10。
输出说明
function函数返回输出数列A第n项的值给主函数。 主函数自行完成输出。
输入样例
5
输出样例
0.625000
提示
所有浮点数使用双精度浮点来运算!!!
#include <stdio.h>
double function(int x)
{
int i=0;
double a1=1,a2=1,a3=0,t=0;
if(x==1)
return 1;
else
{
for(i=1;i<x;i++)
{
a3=a1+a2;
a1=a2;
t=a2;
a2=a3;
}
return t/a3;
}
}
int main()
{
int n=0;
scanf("%d",&n);
double re=function(n);
printf("%.5f",re);
return 0;
}
歌德巴赫猜想
任意一个大偶数都能分解为两个素数的和,
对与输入的一个正偶数,写一个程序来验证歌德巴赫猜想。
由于每个正偶数可能分解成多组素数和,仅输出分解值分别是最小和最大素数的一组,按从小到大顺序输出。
输入说明
输入一个正偶数n,1<n<1000。
输出说明
输出分解出的两个最小和最大素数。
输入样例
10
输出样例
3 7
#include <stdio.h>
#include <math.h>
int is_prime(int x)
{
int i=0;
if(x==2 || x==1)//注意1,2是素数
{
return 1;
}
if(x>2)
{
for(i=2;i<=sqrt(x);i++)//素数要从2开始试
{
if(x%i==0)
{
return 0;
}
}
}
return 1;
}
int main()
{
int n=0,i=0;
scanf("%d",&n);
for(i=2;i<=n;i++)
{
if(is_prime(i)==1 && is_prime(n-i)==1)
{
break;
}
}
printf("%d %d",i,n-i);
return 0;
}
求Fibonacci数
题目描述:Fibonacci数列又称兔子数列,数列规律形如:1,1,2,3,5,8,13,21,34……从键盘输入一个正整数n(0<n ≤ 40)
输出第1至第n个Fibnacci数。写一个函数计算第n个Fibnacci数。函数声明如下:int fib(int n);
输入说明:输入一个正整数n;
输出说明:输出第1至第n个Fibnacci数,数据之间以空格分隔。
输入样例:
6
输出样例:
1 1 2 3 5 8
#include <stdio.h>
int fib(int n)
{
int f1=1,f2=1,f3=0,i=0;
if(n==1 || n==2)
return 1;
else if(n>2)
{
for(i=2;i<n;i++)
{
f3=f1+f2;
f1=f2;
f2=f3;
}
return f3;
}
}
int main()
{
int n=0,i=0;
scanf("%d",&n);
int arr[40] = {0};
for(i=0;i<n;i++)
{
arr[i]=fib(i+1);
printf("%d ",arr[i]);
}
return 0;
}