- 《大话数据结构》读书笔记+课程补充
- 每日一个例题示范
一、读书笔记+课程补充
算法:是解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列,并且每条指令表示一个或多个操作。
算法具有零个或多个输入 至少有一个或多个输出
有穷性 确定性 可行性
算法设计要求——
1.正确性:
算法程序没有语法错误
算法程序对于合法的输入数据能够产生满足要求的输出结果
算法程序对于非法的输入数据能够得出满足规格说明的结果
算法程序对于精心选择的,甚至刁难的测试数据都有满足要求的输出结果
2.可读性:便于理解交流
3.健壮性:当输入数据不合法时,算法也能做出相关处理,而不是产生异常或莫名其妙的结果
4.时间效率高 存储量低
事后统计方法:这种方法主要是通过设计好的测试程序和数据,利用计算机计时器对不同算法编制的程序的运行时间进行比较,从而确定算法效率的高低。
算法效率高低估算:
算法的渐进增长:
二、例题示范
全排列问题
题目描述
按照字典序输出自然数 11 到 �n 所有不重复的排列,即 �n 的全排列,要求所产生的任一数字序列中不允许出现重复的数字。
输入格式
一个整数 �n。
输出格式
由 1∼�1∼n 组成的所有不重复的数字序列,每行一个序列。
每个数字保留 5个场宽。
#include <stdio.h>
#include <stdbool.h>
#define N 10
bool used[N]; // 用于标记数字是否已经被使用
int r[N]; // 存储排列结果
int n; // 输入
// 递归生成排列
void pailie(int in) {
if (in == n) { // 如果已经生成了n个数字
for (int i = 0; i < n; i++) {
printf("%-5d", r[i]); // 输出当前排列
}
printf("\n");
return;
}
for (int i = 1; i <= n; i++) { // 尝试每个数字
if (!used[i]) { // 如果数字i还没有被使用
used[i] = true; // 标记数字i已经被使用
r[in] = i; // 将数字i放入当前排列的第in个位置
pailie(in + 1); // 递归生成下一个位置的数字
used[i] = false; // 重置数字i的使用状态,以便尝试其他位置
}
}
}
int main() {
scanf("%d", &n);
if (n < 1 || n > N) { // 判断输入是否合法
printf("不合法!\n");
return 0;
}
pailie(0); // 从第0个位置开始生成排列
return 0;
}
分析:使用了递归思想
定义数组用于标记元素是否被使用
定义出生成排序的函数
运行结果: