一个如下的 6×66×6 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。
上面的布局可以用序列 2 4 6 1 3 52 4 6 1 3 5 来描述,第 i 个数字表示在第 i 行的相应位置有一个棋子,如下:
行号 1 2 3 4 5 61 2 3 4 5 6
列号 2 4 6 1 3 52 4 6 1 3 5
这只是棋子放置的一个解。请编一个程序找出所有棋子放置的解。
并把它们以上面的序列方法输出,解按字典顺序排列。
请输出前 33 个解。最后一行是解的总个数。
输入格式
一行一个正整数 n,表示棋盘是 n×n 大小的。
输出格式
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
输入输出样例
输入
6
输出
2 4 6 1 3 5 3 6 2 5 1 4 4 1 5 2 6 3 4 【数据范围】 对于 100% 的数据,6≤n≤13。
前面行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
用一个二维数组的三列来分别来记录列,行到列的斜线,列到行的斜线,采用回溯算法
算出如果是对整个棋盘范围使用一个二重遍历对【每个方块】进行搜索的话,最终肯定会产生大量重复的解。但我们需要注意到一个关键的地方,由于棋盘的长度和宽度都是8,而一共只有8个皇后需要放置,每一行和每一列不能有重复的皇后,因此一行和一列上最多只能有一个皇后!所以我们可以根据皇后的【行】或者【列】来进行搜索,当在这一行/这一列上找到合法的皇后位置后,我们就可以进入下一行/下一列进行搜索,如果不满足,就返回这一层,若满足,继续往下搜索直至搜索完全部行/列。
include <stdio.h>
int n,sum,ans[20];
int check[3][30]={0};
void dfs(int line)
{
if(line>n)
{
sum++;
if(sum>3)
return ;//假诺找出超出三种则跳出
else{
for(int i=1;i<n;i++)
printf("%d ",ans[i]);
printf("\n");
return;
}
}
for(int i=1;i<=n;i++)
{
if((!check[0][i])&&(!check[1][line+i])&&(!check[2][line-i+n]))//判断是否能够放置
{
ans[line]=i;
check[0][i]=1;
check[1][line+i]=1;
check[2][line-i+n]=1;
dfs(line+1);
check[0][i]=0;
check[1][line+i]=0;
check[2][line-i+n]=0;
}
}
}
int main()
{
scanf("%d",&n);
dfs(1);
printf("%d",sum);
return 0;
}