智斗八皇后

本文介绍了如何使用回溯算法解决6x6跳棋皇后问题,通过限制行和列的搜索,避免重复解,找到所有满足条件的棋子放置方案,共33种,输出前3个解和解的总数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一个如下的 6×66×6 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。

上面的布局可以用序列 2 4 6 1 3 52 4 6 1 3 5 来描述,第 i 个数字表示在第 i 行的相应位置有一个棋子,如下:

行号 1 2 3 4 5 61 2 3 4 5 6

列号 2 4 6 1 3 52 4 6 1 3 5

这只是棋子放置的一个解。请编一个程序找出所有棋子放置的解。
并把它们以上面的序列方法输出,解按字典顺序排列。
请输出前 33 个解。最后一行是解的总个数。

输入格式

一行一个正整数 n,表示棋盘是 n×n 大小的。

输出格式

前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。

输入输出样例

输入 

6

输出 

2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
【数据范围】
对于 100% 的数据,6≤n≤13。

前面行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。

用一个二维数组的三列来分别来记录列,行到列的斜线,列到行的斜线,采用回溯算法

算出如果是对整个棋盘范围使用一个二重遍历对【每个方块】进行搜索的话,最终肯定会产生大量重复的解。但我们需要注意到一个关键的地方,由于棋盘的长度和宽度都是8,而一共只有8个皇后需要放置,每一行和每一列不能有重复的皇后,因此一行和一列上最多只能有一个皇后!所以我们可以根据皇后的【行】或者【列】来进行搜索,当在这一行/这一列上找到合法的皇后位置后,我们就可以进入下一行/下一列进行搜索,如果不满足,就返回这一层,若满足,继续往下搜索直至搜索完全部行/列。

include <stdio.h>
int n,sum,ans[20];
int check[3][30]={0};
void dfs(int line)
{
    if(line>n)
    {
        sum++;
        if(sum>3)

         return ;//假诺找出超出三种则跳出
        else{
            for(int i=1;i<n;i++)
            printf("%d ",ans[i]);
            printf("\n");
            return;
        }
    }
    for(int i=1;i<=n;i++)
    {
        if((!check[0][i])&&(!check[1][line+i])&&(!check[2][line-i+n]))//判断是否能够放置
        {
            ans[line]=i;
            check[0][i]=1;

check[1][line+i]=1;

check[2][line-i+n]=1;
            dfs(line+1);
            check[0][i]=0;

check[1][line+i]=0;

check[2][line-i+n]=0;
        }
    }
}
int main()
{
    scanf("%d",&amp;n);
    dfs(1);
    printf("%d",sum);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值