环形链表详解(让你彻底理解环形链表)

本文介绍了环形链表的概念,提供了判断链表是否存在环的方法(快慢指针法),并探讨了fast和slow指针在环中的行为以及如何求解入环口节点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

568fc242556d44268eb8e7df46bb7ffa.gif

文章目录

  • 一.什么是环形链表?
  • 二.环形链表的例题(力扣)
  • 三.环形链表的延伸问题

  • 补充

一.什么是环形链表?

环形链表是一种特殊类型的链表数据结构,其最后一个节点的"下一个"指针指向链表中的某个节点,形成一个闭环。 换句话说,链表的最后一个节点连接到了链表中的某个中间节点,而不是通常情况下连接到空指针 (null)

2a3ae267dc37450db18e7953459ec49c.png

二.环形链表的例题(力扣)

给你一个链表的头节点 head ,判断链表中是否有环。

如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。注意:pos 不作为参数进行传递 。仅仅是为了标识链表的实际情况。

如果链表中存在环 ,则返回 true 。 否则,返回 false 。

 

439941fb204285b1d8566adfca4790d1.png

输入:head = [3,2,0,-4], pos = 1
输出:true
解释:链表中有一个环,其尾部连接到第二个节点。

这个题目,我们的做法是快慢指针思想,先设置fast和slow两个指针指向链表的开始,慢的一次走一步,快的一次走两步,如果不带环,fast的就为空,如果带环,fast就会在环里追上slow。我们来画图来看他的情况。96c0690991e84dd2a8de51ad130b8d9d.png

就是这4种情况,然后写代码就可以了,这个并不难 。

bool hasCycle(struct ListNode* head) 
{
	struct ListNode* slow = head, * fast = head;
	while (fast && fast->next)//存在奇偶
	{
		slow = slow->next;
		fast = fast->next->next;
		if (slow == fast)//相交就是环
		{
			return true;
				
        }
	}
    return false;
}

三.环形链表的延伸问题

1.为什么fast和slow一定会在环里相遇会不会在还里面错过或者永远追不上?

2.为什么一定是slow走一步fast走两步?难道不能slow一步fast走其他步数?

3.如何去求入环口的节点呢?

3.1.为什么fast和slow一定会在环里相遇会不会在还里面错过或者永远追不上?

slow和fast一定是fast先入环,这时候slow走了入环前距离的一半,随着slow进环,fast已经在环里走了一段距离了,走的多少和环的大小是有关系的,我们假设slow进环的时候离fast距离为N快的开始追慢的,慢的,每次走一步快的每次走两步就相当于追y一步,所以说他的距离变化是N,N-1,N-2。。。1,0,他们之间的距离为零时就是相遇点,所以说一定追得上。

3.2为什么一定是slow走一步fast走两步?难道不能slow一步fast走其他步数?

假设slow一步,fast3步,slow近环之后,他们的距离为N,则他们的距离变化为当N为偶数是N,N-2,N-4…..0,2。可以追得上,但是N为奇数的时候N的变化为N,N-2,N-4..1,-1。如果因为奇数距离为-1意味着他们之间的距离变成了c-1(c是环的长度),那么就要重新追,但是你重新追的话你就需要判断c-1他是不是二的倍数,如果它是的话就可以追上不是的话就追不上。

在假设slow一步,fast4步,追3步,其实也是一样的,如果N是3的倍数就可以追上,但是N不是3的倍数的话,就要看,有两种情况,一种是N,N-3,N-6..2,-1。一种为N,N-3,N-6..1,-2。根据之前的结论,如c-1和c-2是3的倍数的话就可以追上

3.3如何去求入环口的节点呢?

先说结论:一个指针从相遇点开始走一个指针,从链表头开始走,他们会在环的入口点相遇。

2d614bb37c6a45d582ac2bd711b41eb0.png

 

追上的相遇的过程中,慢指针的距离:L+X,快指针的距离:L+NC+X,因为你不知道fast在环里多跑了几圈,所以设了一个N,但是N肯定>=1,又因为fast是slow的两倍,所以2(L+X)=L+NC+X。整理可得L=(N-1)X+C-X,(N-1)X就是从meetNode开始又走到meetNode的距离,C-X就是从相遇点到入口点的距离,结论得证。

struct ListNode* deCycle(struct ListNode* head)
{
	struct ListNode* slow = head, * fast = head;
	while (fast && fast->next)
	{
		slow = slow->next;
		fast = fast->next->next;
		//相遇了
		if (slow == fast)
		{
			struct ListNode* meet = slow;
       //由公式得证
			while (meet != head)
			{
				meet = meet->next;
				head = head->next;
			}
			return meet;
		}
	}

	return NULL;

}
	

ae5aeed702e2423ea42c9c0d7cb3b2a8.png


补充

其实求入口点还有一种方法就是在入口点处,直接指向空指针,把它看作一个相交链表来做,由头节点和相遇点之前的那个节点,然后两个节点找相交点就可以了。

 

评论 43
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LaNzikinh篮子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值