.组合数.

本文介绍了组合数的四种情况:Ⅰ,数据较小时,考虑打表。Ⅱ数据范围较大时,利用费马小定理求出逆元,进而做预处理,进而打表求解。Ⅲ当a与b的值非常大时,用卢卡斯定理简化。Ⅳ,高精度问题,利用质因数与逆元来化除为乘。

能在1s中跑过的数据(大概1e8次),可以考虑预处理之后打表。

题目:885. 求组合数 I - AcWing题库

思路:贴一张

 代码:

#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;

const int N=2010,mod=1e9+7;
int n,t[N][N];

//先将所有可能的结果计算出来,复杂度控制在在4e7,能过
void init()
{
    for(int i=0;i<N;i++)
     for(int j=0;j<=i;j++)
     //j=0时,只有一种情况
      if(!j) t[i][j]=1;
      //公式
      else t[i][j]=(t[i-1][j]+t[i-1][j-1])%mod;//先取模,防止溢出
      
    return;
}
int main()
{
    init();
    cin >> n;
    while(n--)
    {
        int a,b;
        cin >> a >> b;
        cout << t[a][b] << endl;
    }
    
    return 0;
}

当数据范围较大时,直接预处理可能会爆,所以可以做优化

题目:886. 求组合数 II - AcWing题库

 思路:

代码:

#include<iostream>
#include<cstring>

using namespace std;

//对于可能会爆int的乘积都要做预处理,将其强转为long long类型
typedef long long LL;
const int N=100010,mod=1e9+7;

int n;
int fact[N],infact[N];

//快速幂
int quick_mi(int a,int k,int p)
{
    int res=1;
    while(k)
    {
        if(k & 1) res=(LL)res*a%p;
        k>>=1;
        a=(LL)a*a%p;
    }
    
    return res;
}

int main()
{
    //0!=1,1的逆元也是1
    fact[0]=infact[0]=1;
    //预处理
    for(int i=1;i<N;i++)
    {
        //求当前数的阶乘
        fact[i]=(LL)fact[i-1]*i%mod;
        //求当前数阶乘的逆元=上一个数的阶乘×当前数的逆元,是一个递推的过程
        infact[i]=(LL)infact[i-1]*quick_mi(i,mod-2,mod)%mod;
    }
    
    cin >> n;
    for(int i=0;i<n;i++)
    {
        int x,y;
        cin >> x >> y;
        //三个数相乘必会爆int,所以要提前%上mod
        cout << (LL)fact[x]*infact[x-y]%mod*infact[y]%mod << endl;
    }
    
    return 0;
}

Ⅲ 

题目:887. 求组合数 III - AcWing题库

当排列组合的数a、b较大时,预处理必会爆int。这里采用lucas定理。

 前者由于b % p,所以b小于p,同理a也小于p。那么对于a、b都小于p的排列组合,可以直接通过逆元法求出即上面的组合数Ⅱ。而后者则可以通过反复调用lucas定理,使得b/p与a/p都在可控范围内,进而利用逆元法进行求解。


证明过程且看这位友友超级透彻的题解:AcWing 887. 求组合数 III - AcWing

代码:

#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;

typedef long long LL;
int n;

int quick_mi(int a,int b,int p)
{
    int res=1;
    while (b)
    {
        if(b & 1) res=(LL)res * a % p;
        a=(LL)a * a % p;
        b >>= 1;
    }
    return res;
}

int formale(int a,int b,int p)
{
    if (b >  a) return 0;
    int res=1;
    LL x=1,y=1;
//排列组合的公式,并且与分子约去了(a-b)!
    for(int i = a ,j = 1 ; j <= b ;j ++ ,i -- ) 
    {
        //求出a进行b次的乘积,因为a!与(a-b)!可以与a!约去(a-b)!,进而a!只剩下b次乘法
        x=(LL)x * i %p;
        //求出b的阶乘
        y=(LL)y * j % p;
    }
    //求出a与b的排列组合。即 [(a)*(a-1)...*(a-b+1)]*(b!)的逆元
    res=(LL)x * quick_mi(y,p-2,p) % p;
    return res;
}

int lucass(LL a,LL b,int p)
{
    //如果优化到了a < b那么即可直接调用排列组合公式进行求解。
    if(a < p && b < p) return formale(a,b,p);
    return (LL)formale(a % p ,b % p, p) * lucass(a / p, b / p, p) % p;
}

int main()
{
    cin >> n;
    
    while(n--)
    {
        LL a,b,p;
        cin >> a >> b >> p;
        cout << lucass(a,b,p) << endl;
    }
    
    return 0;
}

Ⅳ 

高精度问题

在这里讲述一下求出每个质因子出现次数的意义在哪里。再求a和b的排列组合时,根据原始公式也就是a! / ((a-b)!*b!)那么,如果a的阶乘里含有质因子x的个数为19,(a-b)!含有质因子x的个数为8,b!里含有质因子x的个数为10,那么对于a! / ((a-b)!*b!)的结果,最后含有质因子x的个数也就为1(分母所含质因子x的个数减去分母所含质因子x的个数),同理我们可以通过质因子约数求出结果所含其它质因子的个数,那么将这所有质因子^个数 的乘积也就是排列组合的结果。

也就变高精度乘法与除法 为 高精度乘法,增加效率,简化代码。

那么质因子的个数该如何求去呢?我们不可能先将阶乘a的结果求出,然后再分解质因数,因为对于本题分子或者分母的阶乘必会爆int,那么我们可以通过分解来求,
举个例子:分解8!的阶乘的质因数
  ①:直接求,8!=40320=2^7*3^2*5^1*7^1,那么8!中质因子2的个数为7,3的个数为2,5个数为1,7的个数为1。
②:分解来求,先通过线性筛,筛出8以内的质数为2,3,5,7,那么8!以内2的个数为8/2+8/(2^2)+8/(2^3)+8/(2^4).....8/(2^k),上述乘法全部向下取整则有:4+2+1+0...+0=7,同理3的个数为8/(3^1)+8/(3^2)+....8/(3^k)=2+0+..+0=2,同理可以求得5的个数为1,7的个数为1。
复杂度:
上面①和②的求法时间复杂度分别是:①:求8的阶乘时间复杂度为O(n),分解质因子的复杂度为O(n*sqrt(n))总体为O(n*sqrt(n)),是线性的;②线性筛的时间复杂度为O(n),分解求质因子个数的时间复杂度为log(n),那么总体为O(n)。空间复杂度:①∞,②<n

那么显而易见低于高精度而言应当采取分解来求,公式见这位大佬的总结:AcWing 888. 求组合数 IV(高精度-素数组合) - AcWing

代码:

#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>

using namespace std;

const int N=5010;
int primes[N],prime_sum[N],ans=0;
bool st[N];

//线性筛质数
void get_primes(int n)
{

    for(int i=2; i <= n; i++)
    {
        if(!st[i]) primes[ans++]=i;
        
        for(int j=0; primes[j] <= n / i; j++)
        {
            st[i * primes[j]] = true;
            if(i % primes[j] == 0) break;
        }
    }
}
//公式
int get(int n,int p)
{
    int ans=0;
    while(n)//n==0时,后续的值全为0,则+0无意义
    {
        ans += n / p;
        n /= p;
    }
    
    return ans;
}
//高精度乘法
vector<int> mul(vector<int> p,int q)
{
    int t = 0;
    vector<int> c;
    //放入数组时,是从后向前放,那么再做乘法的时候即从前(个位)向后算
    for(int i = 0; i < p.size(); i++)
    {
        t += p[i] * q;
        c.push_back(t%10);
        t /= 10;
    }
    
    while(t)
    {
        c.push_back(t % 10);
        t /= 10;
    }
    
    //while(c.size > 1 && c.back() == 0) c.pop_back();去除前导零,当b=0时才需要这一步
    return c;
}

int main()
{
    int a,b;
    cin >> a >> b;
    
    get_primes(a);
    
    for(int i = 0; i < ans; i ++ )
    {
        int p = primes[i];
        //得到质数p的总个数
        prime_sum[i] = get(a,p) - get(a-b,p) - get(b,p);
    }
    
    
    vector<int> p;
    //先将1放进去,以便做乘法
    p.push_back(1);
    //枚举不同质数^个数 之间的乘积
    for(int i = 0; primes[i] != 0; i ++ )
      for(int j = 0; j < prime_sum[i]; j ++ ) //一个一个乘,简化代码
        p = mul(p,primes[i]);
        
    for(int i = p.size() - 1; i  >= 0; i -- ) cout << p[i];
    
    return 0;
}

 满足条件的01序列

题目:889. 满足条件的01序列 - AcWing题库

 代码:

最朴素版的思路与代码,300ms

#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;

typedef long long LL;
const int mod = 1e9 + 7;

//快速幂
int quick_mi(int a,int k,int p)
{
    int res = 1;
    while(k)
    {
        if(k & 1) res = (LL)res*a%p;
        a = (LL) a*a%p;
        k >>= 1;
    }
    
    return res;
}

int main()
{
    int n;
    cin >> n;
    //求出分子的阶乘
    int res = 1;
    for(int i = 1; i <= 2*n; i ++) res = (LL)res*i%mod;   
    //求出分母的逆元-变除为乘
    int cnt=1;
    for(int i = 1; i <= n; i ++ ) cnt = (LL)cnt*quick_mi(i, mod-2, mod)%mod;

    //除以(n+1)也要求出其逆元再乘,因为前面是不断取模的过程,所以直接除必然wa掉
    cout << (LL)res%mod*cnt%mod*(LL)cnt%mod*quick_mi(n+1,mod-2,mod)%mod << endl;
    
    return 0;
}

思路优化,但时间不变,302ms

#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;

typedef long long LL;
const int mod = 1e9 + 7;

int quick_mi(int a,int k,int p)
{
    int res = 1;
    while(k)
    {
        if(k & 1) res = (LL)res*a%p;
        a = (LL) a*a%p;
        k >>= 1;
    }
    
    return res;
}

int main()
{
    int n;
    cin >> n;
    
    int res = 1;
    int a=2*n,b=n;
    //边求阶乘的同时,边与分子的逆元相乘。遍历结束时即为分子与分母逆元的乘积
    for(int i = a,j = 1; j <= b; j ++, i -- )
    {
        res=(LL)res * i % mod;
        res=(LL)res * quick_mi(j, mod-2, mod) % mod;
    }

    cout << (LL)res*quick_mi(n+1,mod-2,mod)%mod << endl;
    
    return 0;
}

究极优化:16ms 

#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;

typedef long long LL;
const int mod = 1e9 + 7;

int quick_mi(int a,int k,int p)
{
    int res = 1;
    while(k)
    {
        if(k & 1) res = (LL)res*a%p;
        a = (LL) a*a%p;
        k >>= 1;
    }
    
    return res;
}

int main()
{
    int n;
    cin >> n;
    
    int a=2*n,b=n;
    
    //先求出分子与分母的阶乘
    int x=1,y=1;
    for(int i = a,j = 1; j <= b; j ++, i -- )
    {
        x=(LL)x * i % mod;
        y=(LL)y * j % mod;
    }
    
    //最后分母的阶乘,与分子阶乘的逆元相乘。
    //三数相乘需要多次取模,以防爆int
    cout << (LL)x * quick_mi(y,mod-2,mod) % mod * quick_mi(n+1,mod-2,mod)%mod << endl;
    
    return 0;
}

我们可以发现,第三个代码的快速幂只调用了一次,进而降低时间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值