蛇形方阵(二维数组)

给出一个不大于 99 的正整数 n,输出 n×n 的蛇形方阵。

从左上角填上 11 开始,顺时针方向依次填入数字,如同样例所示。注意每个数字有都会占用 33 个字符,前面使用空格补齐。

输入格式

输入一个正整数 n,含义如题所述。

输出格式

输出符合题目要求的蛇形矩阵。

输入输出样例

输入 #1

4

输出 #1

  1  2  3  4
 12 13 14  5
 11 16 15  6
 10  9  8  7

说明/提示

数据保证,1≤n≤9。

该题思路:

从第一排开始往右走,走到n处向下走。四个数之后向左走,再经历四个数之后向上走。

即只需要四个部分顺序由向右走到向下走到向左走到向上走,使用四个不同的循环即可满足效果,需要注意四个循环的条件,一是不能超出n个数范围,二是蛇头前方是否有数字。

上代码:

#include<stdio.h>
int main()
{   
    int n,x=1,y=1,m=1,a[15][15]={0}; //m为计数器,也为数组a赋值。 
    scanf("%d",&n);//输入题目要求n。 
    a[x][y]=m;//初始化数组第一个数的值为1. 
    while(m<n*n)//当计数器与最后一位数相等时循环结束 
    {
        while(a[x][y+1]==0&&y+1<=n)//  向下走  限制条件 下一位数为零&&防止越界 
        {
            y++;//进入下一位 
            m++;//计数器加一 
            a[x][y]=m;//已经进入下一位,使其获得m的值。 
        }
        while(a[x+1][y]==0&&x+1<=n)// 无法继续向下,向左走 
        {
            x++;
            m++;
            a[x][y]=m;    
        } 
        while(a[x][y-1]==0&&y-1>=1)//无法继续向左,向上走 
        {
            y--;
            m++;
            a[x][y]=m;
        }
        while(a[x-1][y]==0&&x-1>=1)//无法继续向上,向右走,之后便回到第一个while处 
        {
            x--;
            m++;
            a[x][y]=m;
        }
    }
        for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)//两个for循环嵌套用以输出二维数组 
        {
            printf("%3d",a[i][j]);//题目要求格式化输入,%3d使其占用3个字符位 
        }
        printf("\n");//输完一排换行。 
    }
    return 0;
}

以上,需要我们对于二维数组的理解透彻才能意识到题目本身其实就是在考察下标的利用

  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 蛇形方阵2是一个由数字组成的矩阵,其特点是数字按照蛇形排列,从左上角开始,顺时针方向逐渐增加直到填满整个矩阵。 要解决这个问题,我们需要计算出每个位置上应该填入的数字。具体的步骤如下: 首先,我们需要确定矩阵的大小,即行数和列数。题目中给出的输入数据是一个整数n,我们可以将其开方取整得到矩阵的边长。 然后,我们可以定义一个二维数组matrix,用来存储蛇形方阵。并且初始化为全零。 接下来,我们需要在矩阵中填入正确的数字。我们可以定义两个变量row和col,分别表示当前要填入数字的行数和列数。同时,我们定义一个变量num,用来表示当前要填入的数字,初始值为1。 接下来,我们可以进入一个循环,循环的条件是num <= n * n。在每一次循环中,我们按照蛇形的规则来填入数字。 首先,我们将num填入matrix[row][col]。 然后,我们需要判断下一个位置的行数和列数应该如何变化。根据蛇形的规则,下一个位置的行数和列数应该分为四种情况: 1. 如果col < n-1,且matrix[row][col+1]的值为0,说明右边的位置还没有填入数字,则下一个位置是右边的位置(matrix[row][col+1]); 2. 如果row < n-1,且matrix[row+1][col]的值为0,说明下方的位置还没有填入数字,则下一个位置是下方的位置(matrix[row+1][col]); 3. 如果col > 0,且matrix[row][col-1]的值为0,说明左边的位置还没有填入数字,则下一个位置是左边的位置(matrix[row][col-1]); 4. 如果row > 0,且matrix[row-1][col]的值为0,说明上方的位置还没有填入数字,则下一个位置是上方的位置(matrix[row-1][col])。 根据上述四种情况,我们可以确定下一个位置的行数和列数,并将num加1。 最后,循环结束后,矩阵中的每个位置都填入了正确的数字。 这样,我们就完成了蛇形方阵2的计算,并且通过矩阵matrix可以得到最终的结果。 ### 回答2: 蛇形方阵2是一种特殊的方阵,其特点是将数字按照蛇形排列在方阵中。首先,我们需要确定方阵的大小n,即方阵的行数和列数都为n。然后,我们需要按照从左到右、从上到下、从右到左、从下到上的顺序,将数字依次填入方阵中。 具体的步骤如下: 1. 创建一个n×n的方阵matrix,并初始化为0。 2. 定义变量num,初始值为1,用来表示要填入的数字。 3. 定义四个变量rowStart、rowEnd、colStart和colEnd,分别表示当前要填入数字的起始行、结束行、起始列和结束列,初始值分别为0、n-1、0和n-1。 4. 进入循环,条件为num小于等于n×n。 5. 在循环中,按照从左到右的顺序,将数字逐个填入方阵的第rowStart行,列号从colStart到colEnd。 6. 填入结束后,将rowStart加1,表示下一行要填入数字。 7. 在循环中,按照从上到下的顺序,将数字逐个填入方阵的第colEnd列,行号从rowStart到rowEnd。 8. 填入结束后,将colEnd减1,表示下一列要填入数字。 9. 在循环中,按照从右到左的顺序,将数字逐个填入方阵的第rowEnd行,列号从colEnd到colStart。 10. 填入结束后,将rowEnd减1,表示下一行要填入数字。 11. 在循环中,按照从下到上的顺序,将数字逐个填入方阵的第colStart列,行号从rowEnd到rowStart。 12. 填入结束后,将colStart加1,表示下一列要填入数字。 13. 在循环结束后,方阵matrix中就按照蛇形排列了从1到n×n的数字。 14. 最后,输出方阵matrix即可。 通过以上步骤,我们可以生成一个蛇形方阵。这个方阵具有一定的规律,可以用于一些数字的排列和展示。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值