题目描述
劳动节来了,这个假期很长,老多的学生都计划要去来一场说走就走的旅行。泰山好漂漂亮亮的,所以王鹏和他的同学想去爬泰山。登山运动是王鹏业余爱好,所以他非常兴奋。突然,他产生了一个很荒谬的想法。泰山有好多好多的台阶,然后呢,他可以一步爬两个台阶或者一步一个台阶,那么他爬个山可以有几种方式呢?举个栗子,如果有两级台阶,那么他就有两种方式:第一种就是一步一个台阶,第二种就是biu的一下一步两个台阶
输入
输入包括许多测试用例,每一行都是一个整数N(N <= 40)的测试用例,N是泰山的楼梯台阶数。
输出
你应该输出王鹏有多少种爬山的方式,每个样例输出一行。
样例输入
1
2
3
样例输出
1
2
3
思路
本题为典型的动态规划问题,我们可以先定义一个dp数组,dp[i]表示爬到第i个台阶上的方法数,根据题目描述,有以下的递推关系:
爬到第1个台阶只有1种方法(即直接爬1个台阶)。
爬到第2个台阶有2种方法(即分别爬1个台阶两次,或者一次爬2个台阶)。
对于i > 2的台阶,可以从第i-1个台阶爬1个台阶上来,或者从第i-2个台阶爬2个台阶上来。因此,dp[i] = dp[i-1] + dp[i-2]。
代码
#include <bits/stdc++.h>
using namespace std;
int zou(int n){
int dp[n];
if(n==1) return 1;
else if(n==2) return 2;
else{
dp[1]=1;
dp[2]=2;
for(int i=3;i<=n;++i){
dp[i]=dp[i-1]+dp[i-2];
}
return dp[n];
}
}
int main(){
int n;
while(cin>>n){
cout<<zou(n)<<endl;
}
return 0;
}