MySQL的函数

本文详细介绍了MySQL8.0新增的窗口函数,包括非聚合函数、序号函数、开窗聚合函数、分布函数如CUME_DIST和PERCENT_RANK,以及前后和头尾函数如LAG和LEAD,还有NTH_VALUE和NTILE的应用实例。
摘要由CSDN通过智能技术生成

MySQL的函数-窗口函数

介绍

MySQL8.0新增窗口函数,窗口函数又被称为开窗函数,与Oracle窗口函数类似,属于MySQL的一大特点。

非聚合窗口函数是相对于聚合函数来说的。聚合函数是对一组数据计算后返回单个值(即分组),非聚合函数一次只会处理一行数据。窗口函数在行记录上计算某个字段的结果时,可将窗口范围内的数据输入到聚合函数中,并不改变行数。

分类

语法结构

window_function (expr) OVER(
PARTITION BY...
ODER BY...
FRAME_CLAUSE
)

其中,window_function是窗口函数的名称;expr是参数,有些函数不需要参数;over句子包含三个选项:

分区(PARTITION BY)

PARTITION BY 选项用于将数据行拆分成多个分区(组),它的作用类似于group by 分组。如果省略了partition by,所有的数据作为一个组计算

排序(ODER BY)

OVER子句中的ODER BY选项用于指定分区内的排序方式,与ODER BY子句的作用类似

以及窗口大小(frame_clause)

frame_clause选项用于在当前分区内指定一个计算窗口,也就是一个与当前行相关的数据子集。

序号函数

序号函数有三个:ROW_NUMBER()、RANK()、DENSE_RANK()可以用来实现分组排序,并添加序号。

格式
row_number()|rank()|dense_rank() over(
partition by...
oder by...
)
操作
use mydb4;
create table employee(
dname varchar(20),
eid varchar(20),
ename varchar(20),
hiredate date,
salary double
);
-- 对每个部门的员工按照薪资排序,并给出排名
select
dname,
ename,
salary,
row_number() over(paitition by dname oder by salary desc)as rn
from employee;

开窗聚合函数-SUM,AVG,MIN,MAX

概念

在窗口中每条记录动态地应用聚合函数(SUM()、AVG()、MIN()、COUNT()),可以动态计算在指定的窗口内的各种聚合函数值。

操作
select 
dname,
ename,
salary,
sum(salary) over(partition by dname oder by hiredate) as pv1
from employee;

select dname,
ename,
salary,
sum(salary) over(partition by cookieid) as pv3
from itcast_t1;-- 如果没有 oder by排序语句 默认把分组内的所有数据进行sum操作

分布函数-CUME_DIST和PERCENT_RANK

介绍-CUME_DIST
用途:分组内小于、等于当前rank值的函数/分组内总行数
应用场景:查询小于等于当前薪资(salary)的比例
操作
select
dname,
ename,
salary,
cume_dist() over(oder by salary) as rn1, -- 没有partition语句所有的数据位于一组
cume_dist() over(partition by dept oder by salary) as rn2
from employee;
介绍-PERCENT_RANK
用途:每行按照公式(rank1)/(rows-1)进行计算。其中,rank为RANK()函数产生的序号,rows为当前窗口的记录总行数
应用场景:不常用
操作
select
dname,
ename,
salary,
rank() over(partition by dname oder by salary desc) as rn,
percent_rank() over(partition by dname oder by salary desc) as rn2
from employee;

前后函数-LAG和LEAD

介绍
用途:返回位于当前行的前n行(LAG(expr,n))或后n行(LEAD(expr,n))的expr的值
应用场景:查询前一名同学的成绩和当前同学成绩的差值
操作
select
dname,
ename,
hiredate,
salary,
lag(hiredate,1,'2000-01-01') over(partition by dname oder by hiredate) as last_1_time,
lag(hiredate,2) over(partition by dname oder by hiredate) as last_2_time
from employee;

头尾函数-FIRST_VALUE和LAST-VALUE

介绍
用途:返回第一个(FIRST_VALUE(expr))或最后一个(LATS_VALUE(expr))expr的值
应用场景:截至到当前,按照日期排序查询第一个入职和最后一个入职员工的薪资
操作
-- 注意,如果不指定ODER BY,则会进行排序混乱,会出现错误的结果
select
dname,
ename,
hiredate,
salary,
first_value(salary) over(partition by dname oder by hiredate) as first,
last_value(salary) over(partition by dname oder by hiredate) as last
from employee;

其他函数-NTH_VALUE(expr,n)、NTILE(n)

介绍-NTH_VALUE(expr,n)
用途:返回窗口中第n个expr的值。expr可以是表达式,也可以是列名
应用场景:截止到当前薪资,显示每个员工的薪资中排名第二或第三的薪资
操作
-- 查询每个部门截至目前薪资排在第二和第三的员工信息
select
dname,
ename,
hiredate,
salary,
nth_value(salary,2) over(partition by dname oder by hiredate) as second_score,
nth_value(salary,3) over(partition by dname oder by hiredate) as second_score,
from employee
介绍-NTILE
用途:将分区中的有序数据分为n个等级,记录等级数
应用场景:将每个部门员工按照入职日期分成三组
操作
-- 根据入职日期将每个部门的员工分成三组
select
dname,
ename,
hiredate,
salary,
ntile(3) over(partition by dname oder by hiredate) as rn
from employee;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值