欧几里得算法,也称为辗转相除法,是求解最大公约数的经典方法。其基本原理如下:
对于两个正整数a和b,假设a > b。
使用b去除a,得到余数r。
如果r等于0,则b即为最大公约数。
如果r不等于0,则将b赋值为a,将r赋值为b,然后重复上述步骤,直到r等于0为止。
让我们以具体的例子来演示欧几里得算法:
例子1:求解GCD(48, 18)。
用48%18,得到余数12。
用18%12,得到余数6。
用12%6,得到余数0。
余数为0,因此GCD(48, 18)等于6。
那么让我用递归的代码演示一下
int gcd(int a,int b)
{
if(b==0)
{
return a;
}
return gcd(b,a%b);
}