求最大公因数(欧几里得法)

本文介绍了欧几里得算法,一种用于计算两个正整数最大公约数的经典方法,通过递归方式演示了其实现过程,并以48和18为例进行了详细解释。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欧几里得算法,也称为辗转相除法,是求解最大公约数的经典方法。其基本原理如下:

对于两个正整数a和b,假设a > b。
使用b去除a,得到余数r。
如果r等于0,则b即为最大公约数。
如果r不等于0,则将b赋值为a,将r赋值为b,然后重复上述步骤,直到r等于0为止。

让我们以具体的例子来演示欧几里得算法:

例子1:求解GCD(48, 18)。

用48%18,得到余数12。
用18%12,得到余数6。
用12%6,得到余数0。
余数为0,因此GCD(48, 18)等于6。

那么让我用递归的代码演示一下

int gcd(int a,int b)
{
    if(b==0)
    {
        return a;
    }
    return gcd(b,a%b);
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值