一个图中可能存在多条相连的边,我们一定可以从一个图中挑出一些边生成一棵树。这仅仅是生成一棵树,还未满足最小,当图中每条边都存在权重时,这时候我们从图中生成一棵树(n - 1 条边)时,生成这棵树的总代价就是每条边的权重相加之和。
一个有N个点的图,边一定是大于等于N-1条的。
图的最小生成树,就是在这些边中选择N-1条出来,连接所有的N个点。这N-1条边的边权之和是所有方案中最小的。
实现最小生成树的两种算法
Prim 算法
算法分析:
Prim算法每次循环都将一个蓝点u变为白点,并且此蓝点u与白点相连的最小边权min[u]还是当前所有蓝点中最小的。这样相当于向生成树中添加了n-1次最小的边,最后得到的一定是最小生成树。
我们通过对下图最小生成树的求解模拟来理解上面的思想。蓝点和虚线代表未进入最小生成树的点、边;白点和实线代表已进入最小生成树的点、边。
初始时所有点都是蓝点,min[1]=0,min[2、3、4、5]= ∞。权值之和MST=0。
第一次循环自然是找到min[1]=0最小的蓝点1。将1变为白点,接着枚举与1相连的所有蓝点2、3、4,修改它们与白点相连的最小边权。
min[2]=w[1][2]=2;
min[3]=w[1][3]=4;
min[4]=w[1][4]=7;
第二次循环是找到 min[2] 最小的蓝点2。将2变为白点,接着枚举与2相连的所有蓝点3、5,修改它们与白点相连的最小边权。
min[3]=w[2][3]=1;
min[5]=w[2][5]=2;
第三次循环是找到min[3]最小的蓝点3。将3变为白点,接着枚举与3相连的所有蓝点4、5,修改它们与白点相连的最小边权。
min[4]=w[3][4]=1;
由于min[5]=2 < w[3][5]=6;所以不修改min[5]的值。
最后两轮循环将点4、5以及边w[2][5],w[3][4]添加进最小生成树。
最后权值之和MST=6。这n次循环,每次循环我们都能让一个新的点加入生成树,n次循环就能把所有点囊括到其中;每次循环我们都能让一条新的边加入生成树,n-1次循环就能生成一棵含有n个点的树;每次循环我们都取一条最小的边加入生成树,n-1次循环结束后,我们得到的就是一棵最小的生成树。这就是Prim采取贪心法生成一棵最小生成树的原理。算法时间复杂度:O (N2)。
精彩例题:
#include <cstdio>
#include <string>
#include <cstring>
#include <iostream>
#include <algorithm>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = 505;
int a[maxn][maxn];
int vis[maxn]; //记录边是否被选择
int dist[maxn]; //记录最小边权
int n,m;
int u,v,w;
long long sum = 0;
int prim(int pos) {
dist[pos] = 0;
// 一共有 n 个点,就需要 遍历 n 次,每次寻找一个权值最小的点,记录其下标
for(int i = 1; i <= n; i ++) {
int cur = -1;
for(int j = 1; j <= n; j ++) { //取一条最小的边加入生成树
if(!vis[j] && (cur == -1 || dist[j] < dist[cur])) {
cur = j;
}
}
// 这里需要提前终止
if(dist[cur] >= INF) return INF;
sum += dist[cur];
vis[cur] = 1;
for(int k = 1; k <= n; k ++) {
// 只更新还没有找到的最小权值
if(!vis[k]) dist[k] = min(dist[k],a[cur][k]);
}
}
return sum;
}
int main(void) {
scanf("%d%d",&n,&m);
memset(a,0x3f,sizeof(a));
memset(dist,0x3f,sizeof(dist));
for(int i = 1; i <= m; i ++) {
scanf("%d %d %d",&u, &v, &w);
a[u][v] = min(a[u][v],w);
a[v][u] = min(a[v][u],w);
}
int value = prim(1);
if(value >= INF) puts("impossible");
else printf("%lld\n",sum);
return 0;
}
kruskal (克鲁斯卡尔算法)
Kruskal(克鲁斯卡尔)算法是一种巧妙利用并查集来求最小生成树的算法。
算法描述:
在描述 kruskal 算法时先了解一下连通块的概念, 我们将无向图中相互连通的一些点称为处于同一个连通块中。
从上图我们可以清晰的看到,有 3 个连通块(1, 2) , (3) , (4, 5, 6)。
Kruskal算法将一个连通块当做一个集合。Kruskal首先将所有的边按从小到大顺序排序(一般使用快排),并认为每一个点都是孤立的,分属于n个独立的集合。然后按顺序枚举每一条边。如果这条边连接着两个不同的集合,那么就把这条边加入最小生成树,这两个不同的集合就合并成了一个集合;如果这条边连接的两个点属于同一集合,就跳过。直到选取了n-1条边为止。
Kruskal(克鲁斯卡尔)算法开始时,认为每一个点都是孤立的,分属于n个独立的集合。
5个集合{ {1},{2},{3},{4},{5} }
生成树中没有边
Kruskal每次都选择一条最小的边,而且这条边的两个顶点分属于两个不同的集合。将选取的这条边加入最小生成树,并且合并集合。
第一次选择的是<1,2>这条边,将这条边加入到生成树中,并且将它的两个顶点1、2合并成一个集合。
4个集合{ {1,2},{3},{4},{5} }
生成树中有一条边{ <1,2> }
第二次选择的是<4,5>这条边,将这条边加入到生成树中,并且将它的两个顶点4、5合并成一个集合。
3个集合{ {1,2},{3},{4,5} }
生成树中有2条边{ <1,2> ,<4,5>}
第三次选择的是<3,5>这条边,将这条边加入到生成树中,并且将它的两个顶点3、5所在的两个集合合并成一个集合
2个集合{ {1,2},{3,4,5} }
生成树中有3条边{ <1,2> ,<4,5>,< 3,5>}
第四次选择的是<2,5>这条边,将这条边加入到生成树中,并且将它的两个顶点2、5所在的两个集合合并成一个集合。
1个集合{ {1,2,3,4,5} }
生成树中有4条边{ <1,2> ,<4,5>,< 3,5>,<2,5>}
算法结束,最小生成树权值为19。
通过上面的模拟能够看到,Kruskal算法每次都选择一条最小的,且能合并两个不同集合的边,一张n个点的图总共选取n-1次边。因为每次我们选的都是最小的边,所以最后的生成树一定是最小生成树。每次我们选的边都能够合并两个集合,最后n个点一定会合并成一个集合。通过这样的贪心策略,Kruskal算法就能得到一棵有n-1条边,连接着n个点的最小生成树。
精彩例题:
畅通工程之全局最小花费问题
代码:
# include <stdio.h>
# include <stdlib.h>
struct node
{
int x;
int y;
int z;
}edge[3003];
int pre[1001];
int cmp(const void* a, const void* b)
{
struct node* p1 = (struct node*)a;
struct node* p2 = (struct node*)b;
struct node x1 = *p1;
struct node x2 = *p2;
return x1.z-x2.z;
}
int find(int x)
{
while (pre[x] != x)
x = pre[x];
return x;
}
int main()
{
int n;
int m;
scanf("%d %d", &n, &m);
int sum = 0;
for (int i=1; i<=m; ++i)
{
scanf("%d %d %d", &edge[i].x, &edge[i].y, &edge[i].z);
}
qsort(edge, m, sizeof(edge), cmp);
for (int i=1; i<=n; ++i)
pre[i] = i;
int cnt = n; //只要有 n 条边就行了(用于记录加入了几条边)
for (int i=1; i<=m && cnt > 0; ++i)
{
int x = find(edge[i].x);
int y = find(edge[i].y);
if (x == y)
continue;
else
{
pre[x] = y;
sum = edge[i].z;
cnt = cnt - 1;
}
}
if(cnt > 1) puts("impossible");
else printf("%lld\n",sum);
return 0;
}
最小生成树的唯一性
将每个边的信息存储在向量中,依旧从小到大排列,依次遍历判断是否加入此边(记为a)不是环路(起点终点的f值不同),并判断下一条边(记为b)是否权值与此边相同并且a边的两端各自与b的两端在一棵树上(起点代表都在已成的树上 终点为都可连接到接下来的最小树上),若满足,则代表树不唯一。若边数为n-1则已成,否则没有最小生成树。
#include <iostream>
#include <algorithm>
using namespace std;
struct Book{
int u, v, w;
}book[125010];
int V[520], ans = 0;
int p[520], r[520];
int G[520][520] = {0};
bool cmp(Book a,Book b){ //排序
if(a.w != b.w)
return a.w < b.w;
return false;
}
void Init(int n) //初始化
{
for(int i=0; i<=n; i++)
{
r[i] = 0;
p[i] = i;
}
}
int Find(int x){
return x == p[x] ? x : p[x] = Find(p[x]);
}
void Union(int x,int y)
{
x = Find(x);
y = Find(y);
if(x == y)return ;
if(r[x] > r[y])
p[y] = x;
else if(r[y] > r[x])
p[x] = y;
else
{
p[x] = y;
r[y]++;
}
}
int main()
{
int n, m;
scanf("%d %d",&n, &m);
Init(n);
for(int i=0; i<m; i++)
scanf("%d %d %d",&book[i].u, &book[i].v, &book[i].w);
sort(book,book+m,cmp);
int cnt = 0, all = 0, flag = 0;
for(int i=0; i<m; i++){
int pu, pv;
int u = book[i].u, v=book[i].v;
u = Find(u), v = Find(v);
if(u != v){
for(int j=i+1; j<m; j++)}
if(book[j].w == book[i].w){
pu = Find(book[j].u);
pv = Find(book[j].v);
if(( pu == u && pv == v )||( pv == u && pu == v ))
flag = 1;
}else{
break;
}
}
Union(u,v);
cnt++;
all+=book[i].w;
}
}
if(cnt == n-1)
{
printf("%d\n", all);
if(flag)
printf("No\n");
else
printf("Yes\n");
}else{
printf("No MST\n");
cnt = 0;
for(int i=1; i<=n; i++)
if(p[i] == i)
cnt++;
printf("%d\n", cnt);
}
return 0;
}