用Python解决预测问题_多元线性回归模板

多元线性回归是一种统计学方法,用于分析两个或多个自变量(解释变量)与一个因变量(响应变量)之间的关系。在最简单的线性回归模型中,只有一个自变量和一个因变量,它们之间的关系可以用一条直线来近似。而多元线性回归则扩展了这种关系,允许多个自变量同时影响因变量。

基本形式
多元线性回归的基本形式可以表示为:

4e85710b41e4479c85aedbfe28249530.png

其中:

c5d4d92d25ae4020af159da090fa4b70.png

模型假设
多元线性回归模型的有效性依赖于以下几个假设:
1. 线性关系:自变量和因变量之间存在线性关系。
2. 独立性:自变量之间相互独立,没有多重共线性。
3. 同方差性(Homoscedasticity):误差项具有恒定的方差。
4. 正态分布:误差项呈正态分布。

参数估计
通常使用最小二乘法(OLS,Ordinary Least Squares)来估计回归系数。这种方法通过最小化误差项的平方和来找到最佳的回归系数。

模型评估

模型的拟合优度可以通过决定系数来评估,它表示模型解释的变异占总变异的比例。此外,还可以使用调整决定系数来考虑模型中自变量的数量。

特殊情况
- 多元线性回归假设变量之间存在线性关系,如果实际关系是非线性的,模型可能不准确。
- 如果自变量之间存在高度相关性(多重共线性),会影响模型的稳定性和系数的解释性。
- 对异常值和非正态分布的误差项较为敏感。

多元统计分析的应用场景十分广泛,比如在计量经济学中,多元线性回归常用于预测经济变量之间的关系,例如预测消费者支出、GDP增长、失业率等。以下是一个简化的实例,我们将使用多元线性回归模型来预测某一地区的住房价格,这通常在房地产经济学研究中很常见。

假设我们有以下数据:

  • Housing_Price:房屋销售价格(因变量)
  • Avg_Income:地区平均收入(自变量1)
  • Population:地区人口(自变量2)
  • Unemployment_Rate:地区失业率(自变量3)

我们将使用这些数据来构建一个多元线性回归模型,该模型将预测给定这些自变量值时的房屋销售价格。这个例子的数据都是数值类型,如果是类别变量,还需要构建0和1的虚拟变量。

一:满足模型假设下的多元线性回归模型

以下是使用Python和statsmodels库来实现多元线性回归模型的步骤:

首先导入库和创建数据:

import statsmodels.api as sm
import pand
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值