典型相关分析(Canonical Correlation Analysis, CCA)是一种多变量统计分析方法,用于研究两组变量之间的整体相关性。它的基本原理是在两组变量中分别提取有代表性的两个综合变量(即两组变量的线性组合),通过这两个综合变量之间的相关关系来反映两组指标之间的整体相关性。
在进行典型相关分析时,首先需要准备两组相关的多变量数据,每组变量内部可以是相关的。接着,计算两组变量的线性组合,目的是使它们之间的相关性(典型相关系数)最大化。典型相关系数是衡量两组变量之间关系的指标,该值越大表示两组变量的相关性越强。在找到第一对典型变量之后,可以继续寻找第二对、第三对等,每一对典型变量都与前面的变量不相关,以此来提取两组变量间的全部信息 。
典型相关分析的应用领域相当广泛,包括生物医学、经济学、市场研究等。在生物医学中,它可以探索不同生物特征之间的关联,例如基因与表型之间的关系;在经济学中,可以分析不同经济指标之间的关联和影响;在市场研究中,可以研究消费者行为和市场趋势之间的关系 ,在金融市场数据分析中,可以使用CCA来探索经济指标与宏观经济变量之间的关系,从而为投资决策或宏观经济政策制定提供依据 。
此外,典型相关分析的显著性检验也是进行该分析时的一个重要环节,可以帮助研究者判断所发现的相关性是否具有统计学意义 。
为了展示典型相关分析的应用,我们可以创建一个假设性的案例。假设我们有一组关于学生学业表现的数据,包括他们的课程成绩(数学、科学、历史)和他们的学习习惯(每日学习时间、作业完成质量、课堂参与度)。我们的目标是探索这两组变量之间的相关性。
Step1:计算典型变量
导入必要的库
import numpy as np
import pandas as pd
from sklearn.cross_decomposition import CCA
numpy
:用于数值计算,特别是大型多维数组。pandas
:提供数据结构和数据分析工具,特别是DataFrame对象。sklearn.cross_decomposition.CCA
:来自scikit-learn库,用于执行典型相关分析。