根据第七次人口普查数据探索中国平均预期寿命

一:数据介绍

数据来源:预期寿命数据集 - Heywhale.com

该数据提供了中国各地区在第七次人口普查(2020年)中的平均预期寿命,包括男性和女性的预期寿命。该表具有93行和3列。以下是关于这个数据表的具体信息:

  • 指标名称(object 类型):包含93个非空值,这个列描述了不同的预期寿命指标,例如“平均预期寿命(岁)”、“男性(岁)”和“女性(岁)”。
  • 地区(object 类型):包含93个非空值,表示中国各个省份或直辖市。
  • 第七次人口普查(2020年)(float64 类型):包含93个非空值,这个列提供了相应地区和指标名称下的预期寿命数据。

二:数据分析

先读取数据:

import numpy as np
import pandas as pd

df = pd.read_excel("中国平均预期寿命.xlsx")
# 显示数据框的前五行
df

演示数据如下:

然后大致查看下数据特征:

df.describe()

结果如下:

可以看出数据无缺失值且平均寿命为78岁。

1:中国各省份平均寿命排名

  1. 数据集包含三个列:指标名称、地区和第七次人口普查(2020年)的数据。
  2. 我们可以分析“平均预期寿命(岁)”这一指标,因此可以先筛选出这一指标的数据。
  3. 接下来,我们可以比较不同地区或不同性别的平均预期寿命。
  4. 最后,我们可以使用图表来可视化探索结果。
life_expectancy_data = df[df['指标名称'] == '平均预期寿命(岁)']

sorted_life_expectancy = life_expectancy_data.sort_values(by='第七次人口普查(2020年)', ascending=False).reset_index(drop=True)

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] 
plt.rcParams['axes.unicode_minus'] = False 

plt.figure(figsize=(10, 8))
plt.barh(sorted_life_expectancy['地区'], sorted_life_expectancy['第七次人口普查(2020年)'], color='lightgreen')
plt.xlabel('平均预期寿命(岁)')
plt.ylabel('省份')
plt.title('中国各省份平均预期寿命排名(2020年)')
plt.gca().invert_yaxis()  
plt.grid(axis='x')

plt.show()

整体来说,这段代码的目的是创建一个条形图,展示中国各省份在2020年的平均预期寿命,并按照寿命的长短进行排序。图表是水平的,省份名称在y轴上,平均预期寿命在x轴上。

可视化图表如下:

平均预期寿命城市排名分别从上到下依次为上海,北京,天津等,符合预期的想法。

2:中国不同省份男性和女性的平均预期寿命

  1. 要将性别因素纳入分析,我们首先需要从数据集中筛选出男性和女性的平均预期寿命数据。
  2. 接着,我们可以计算全国男性和女性的平均预期寿命,并进行比较。
  3. 最后,我们可以使用条形图来可视化不同省份男性和女性的平均预期寿命,以便比较性别差异。
male_life_expectancy = df[df['指标名称'] == '男性(岁)']
female_life_expectancy = df[df['指标名称'] == '女性(岁)']

national_avg_male_life_expectancy = male_life_expectancy['第七次人口普查(2020年)'].mean()
national_avg_female_life_expectancy = female_life_expectancy['第七次人口普查(2020年)'].mean()

fig, ax = plt.subplots(figsize=(12, 8))
bar_width = 0.35
index = range(len(male_life_expectancy))

male_bars = ax.bar(index, male_life_expectancy['第七次人口普查(2020年)'], bar_width, label='男性', color='lightblue')
female_bars = ax.bar([i + bar_width for i in index], female_life_expectancy['第七次人口普查(2020年)'], bar_width, label='女性', color='lightpink')

ax.set_xlabel('省份')
ax.set_ylabel('平均预期寿命(岁)')
ax.set_title('中国不同省份男性和女性的平均预期寿命(2020年)')
ax.set_xticks([i + bar_width / 2 for i in index])
ax.set_xticklabels(male_life_expectancy['地区'], rotation=45)
ax.legend()

plt.show()

整体来说,这段代码的目的是创建一个条形图,展示中国不同省份男性和女性在2020年的平均预期寿命,并进行比较。图表中男性和女性的条形图并排显示,以便于直观比较。

可视化结果如下:

  1. 我们成功绘制了展示不同省份男性和女性平均预期寿命的条形图。
  2. 图表显示,几乎所有省份女性的平均预期寿命高于男性。
# Calculate the national average life expectancy for males and females
national_avg_male_life_expectancy = male_life_expectancy['第七次人口普查(2020年)'].mean()
national_avg_female_life_expectancy = female_life_expectancy['第七次人口普查(2020年)'].mean()

national_avg_male_life_expectancy, national_avg_female_life_expectancy

进一步得到全国男性的平均预期寿命为75.50岁,女性的平均预期寿命为80.70岁的结论。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值