特征工程与交叉验证在机器学习中的应用

数据入口:学生考试表现影响因素数据集 - Heywhale.com

本数据集提供了关于影响学生考试成绩的多种因素的全面概述。数据集包含了有关学习习惯、出勤率、家长参与、资源获取等方面的信息。

数据说明

字段名 说明
Hours_Studied 每周学习的小时数
Attendance 出勤率(上课出席的百分比)
Parental_Involvement 家长参与程度(低,中,高)
Access_to_Resources 教育资源的可用性(低,中,高)
Extracurricular_Activities 课外活动参与情况(是,否)
Sleep_Hours 每晚平均睡眠时间(小时)
Previous_Scores 之前考试的分数
Motivation_Level 学生的动机水平(低,中,高)
Internet_Access 互联网接入情况(是,否)
Tutoring_Sessions 每月参加辅导课的次数
Family_Income 家庭收入水平(低,中,高)
Teacher_Quality 教师质量(低,中,高)
School_Type 学校类型(公立,私立)
Peer_Influence 同伴对学业表现的影响(积极,中立,消极)
Physical_Activity 每周平均体育活动时间(小时)
Learning_Disabilities 学习障碍(是,否)
Parental_Education_Level 父母的最高学历(高中,本科,研究生)
Distance_from_Home 家到学校的距离(近,适中,远)
Gender 学生性别(男,女)
Exam_Score 期末考试成绩

在本文中将分析不同学习习惯、家长参与度、资源获取等对学生考试成绩的影响以及构建机器学习模型预测学生的考试成绩。

一:影响因素分析

import pandas as pd

file_path = 'StudentPerformanceFactors.csv'
df = pd.read_csv(file_path)

df.info()

了解到该数据含有较少的空缺值,可以进行删除:

df = df[(df!= 0).all(axis=1)]

我们的目标是分析这些因素对Exam_Score(考试成绩)的影响。为了进行这个分析,我们可以采用以下步骤:

  1. 描述性统计分析:首先,我们可以查看这些变量的描述性统计信息,以了解其分布和基本特征。
  2. 相关性分析:接着,我们可以计算这些变量与考试成绩之间的相关性,以找出哪些因素与考试成绩最相关。
  3. 可视化分析:为了更直观地展示结果,我们可以创建一些图表来可视化这些关系。

让我们首先进行描述性统计分析。

descriptive_stats = df[['Hours_Studied', 'Attendance', 'Parental_Involvement', 'Access_to_Resources',
                        'Extracurricular_Activities', 'Sleep_Hours', 'Previous_Scores', 'Motivation_Level',
                        'Internet_Access', 'Tutoring_Sessions', 'Family_Income', 'Teacher_Quality',
                        'School_Type', 'Peer_Influence', 'Physical_Activity', 'Learning_Disabilities',
                        'Parental_Education_Level', 'Distance_from_Home', 'Gender', 'Exam_Score']].describe()

descriptive_stats

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值