- 博客(8)
- 收藏
- 关注
原创 PCA主成分分析
主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维方法。它通过线性变换将原始数据变换到一个新的坐标系中,使得第一个坐标(第一主成分)具有最大的方差,第二个坐标(第二主成分)具有次大的方差,以此类推。PCA的目的是从高维数据中提取出最重要的特征,通过保留最重要的主成分来实现数据的降维,同时尽可能保留原始数据的结构。
2025-06-16 13:10:29
431
原创 支持向量机(SVM)--垃圾邮件过滤器
使用SVMs建立自己的垃圾邮件过滤器。首先需要将每个邮件x变成一个n维的特征向量,并训练一个分类器来分类给定的电子邮件x是否属于垃圾邮件(y=1)或者非垃圾邮件(y=0)。
2025-05-20 19:56:11
326
原创 逻辑回归
这段代码通过梯度下降算法实现了一个完整的逻辑回归模型,用于解决二分类问题。它首先加载数据集,提取特征和标签,并为特征矩阵添加偏置项以支持截距项的计算(X_b = np.c_[np.ones((m, 1)), X]),接着定义了关键函数,包括sigmoid函数(sigmoid(z) = 1 / (1 + np.exp(-z)))用于将预测值映射到(0,1)区间,损失函数(compute_cost)用于计算交叉熵损失以评估模型性能,以及梯度计算函数(compute_gradient)用于指导参数更新。
2025-05-20 11:54:33
656
原创 贝叶斯算法
在分类问题中,将数据的特征看作事件B,类别看作事件A,利用训练数据计算出先验概率(P(A))和条件概率(P(B|A)),然后对于新的数据,根据贝叶斯定理计算其属于各个类别的后验概率(P(A|B)),将其分。基本思路是先区分好训练集与测试集,对文本集合进行分词、去除标点符号等特征预处理的操作,然后使用条件独立假设,将原概率转换成词概率乘积,再进行后续的处理。1.定义模型:选择合适的概率分布来描述模型参数和观测数据之间的关系,通常使用参数化的概率模型。P(A|B) 是后验概率(在观测到B后A的概率);
2025-05-03 20:55:20
520
原创 决策树算法
决策树算法是机器学习领域中的一种重要分类方法,它通过树状结构来进行决策分析。决策树凭借其直观易懂、易于解释的特点,在分类问题中得到了广泛的应用。
2025-05-03 20:38:05
903
原创 分类模型评估
在本博客中,我们介绍了几种常见的分类模型评估指标。在分类模型评估中,选择正确的指标至关重要,因为不同的问题可能需要不同的评估方法。了解每个指标的优点和局限性,以及如何根据问题的需求选择合适的指标,将帮助你更好地评估模型性能,并做出明智的决策。无论你是在开发机器学习模型还是在解决实际问题,正确的分类模型评估方法都是取得成功的关键。
2025-04-07 10:21:17
1092
原创 基于K近邻算法的分类器的实现
数据存储在文本文件datingTestSet2.txt中,每个样本数据占一行,总共1000行。numberOfLines = len(fr.readlines()) #创建返回的NumPy矩阵。该网站现在需要尽可能向海伦推荐她喜欢的人,需要我们设计一个分类器,根据用户的以上三种特征,识别出是否该向海伦推荐。通过公式 new(x) = old(x) - min(x) / max(x) - min (x);测试算法:使用海伦提供的部分数据作为测试样本。使用算法:产生简单的命令行程序。
2025-03-24 22:46:46
1024
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅