acwing大盗阿福
题目描述
阿福是一名经验丰富的大盗。趁着月黑风高,阿福打算今晚洗劫一条街上的店铺。
这条街上一共有 N 家店铺,每家店中都有一些现金。
阿福事先调查得知,只有当他同时洗劫了两家相邻的店铺时,街上的报警系统才会启动,然后警察就会蜂拥而至。
作为一向谨慎作案的大盗,阿福不愿意冒着被警察追捕的风险行窃。
他想知道,在不惊动警察的情况下,他今晚最多可以得到多少现金?
输入格式
输入的第一行是一个整数 T,表示一共有 T 组数据。
接下来的每组数据,第一行是一个整数 N ,表示一共有 N 家店铺。
第二行是 N 个被空格分开的正整数,表示每一家店铺中的现金数量。
每家店铺中的现金数量均不超过1000。
输出格式
对于每组数据,输出一行。
该行包含一个整数,表示阿福在不惊动警察的情况下可以得到的现金数量。
输入样例:
2
3
1 8 2
4
10 7 6 14
输出样例:
8
24
样例解释
对于第一组样例,阿福选择第2家店铺行窃,获得的现金数量为8。
对于第二组样例,阿福选择第1和4家店铺行窃,获得的现金数量为10+14=24。
数据范围:
1 ≤ T ≤ 50;
1≤N≤10^5 ;
code:
#include<iostream>
#include<algorithm>
using namespace std;
const int N=100010;
int t,n;
int home[N];
int dfs(int x){
if(x>n) return 0;
else return max(dfs(x+1),dfs(x+2)+home[x]);
}
int main(){
cin>>t;
while(t--){
cin>>n;
for(int i=1;i<=n;i++){
cin>>home[i];
}
int res=dfs(1);
cout<<res<<endl;
}
return 0;
}
记忆化的code:
#include<iostream>
using namespace std;
const int N=100010;
int n,t;
int home[N];
int mem[N];
int dfs(int x){
if(mem[x]) return mem[x];
int sum=0;
if(x>n) sum=0;
else sum=max(dfs(x+1),dfs(x+2)+home[x]);
mem[x]=sum;
return sum;
}
int main(){
cin>>t;
while(t--){
cin>>n;
for(int i=1;i<=n;i++){
cin>>home[i];
}
memset(mem,0,sizeof(mem));//不能使用上一轮的数
int res=dfs(1);
cout<<res<<endl;
}
return 0;
}
递推的code:
#include<iostream>
using namespace std;
const int N=100010;
int n,t;
int home[N];
int f[N];
int main(){
cin>>t;
while(t--){
cin>>n;
for(int i=1;i<=n;i++){
cin>>home[i];
}
memset(f,0,sizeof(f));//不能使用上一轮的数
for(int i=n;i>=1;i--){
f[i]=max(f[i+1],f[i+2]+home[i]);//递推从f[n]开始递推算出f[1],输出f[1];
}
cout<<f[1]<<endl;
}
return 0;
}
正推code:
#include<iostream>
using namespace std;
const int N=100010;
int n,t;
int home[N];
int f[N];
int main(){
cin>>t;
while(t--){
cin>>n;
for(int i=1;i<=n;i++){
cin>>home[i];
}
memset(f,0,sizeof(f));//不能使用上一轮的数
for(int i=1;i<=n;i++){
//f[i]=max(f[i-1],f[i-2]+home[i]);//递推从f[n]开始递推算出f[1],输出f[1];
//防止越界所以都加2
f[i+2]=max(f[i+1],f[i]+home[i]);
}
cout<<f[n+2]<<endl;
}
return 0;
}