acwing大盗阿福

acwing大盗阿福

题目描述

阿福是一名经验丰富的大盗。趁着月黑风高,阿福打算今晚洗劫一条街上的店铺。

这条街上一共有 N 家店铺,每家店中都有一些现金。

阿福事先调查得知,只有当他同时洗劫了两家相邻的店铺时,街上的报警系统才会启动,然后警察就会蜂拥而至。

作为一向谨慎作案的大盗,阿福不愿意冒着被警察追捕的风险行窃。

他想知道,在不惊动警察的情况下,他今晚最多可以得到多少现金?

输入格式

输入的第一行是一个整数 T,表示一共有 T 组数据。

接下来的每组数据,第一行是一个整数 N ,表示一共有 N 家店铺。

第二行是 N 个被空格分开的正整数,表示每一家店铺中的现金数量。

每家店铺中的现金数量均不超过1000。

输出格式

对于每组数据,输出一行。

该行包含一个整数,表示阿福在不惊动警察的情况下可以得到的现金数量。

输入样例:

2
3
1 8 2
4
10 7 6 14

输出样例:

8
24

样例解释

对于第一组样例,阿福选择第2家店铺行窃,获得的现金数量为8。

对于第二组样例,阿福选择第1和4家店铺行窃,获得的现金数量为10+14=24。

数据范围:

1 ≤ T ≤ 50;
1≤N≤10^5 ;

code:

#include<iostream>
#include<algorithm>
using namespace std;
const int N=100010;
int t,n;
int home[N];
int dfs(int x){
    if(x>n) return 0;
    else return max(dfs(x+1),dfs(x+2)+home[x]);
}
int main(){
    cin>>t;
    while(t--){
        cin>>n;
        for(int i=1;i<=n;i++){
            cin>>home[i];
        }
        int res=dfs(1);
        cout<<res<<endl;
    }
    return 0;
}

记忆化的code:

#include<iostream>
using namespace std;
const int N=100010;
int n,t;
int home[N];
int mem[N];
int dfs(int x){
    if(mem[x]) return mem[x];
    int sum=0;
    if(x>n) sum=0;
    else sum=max(dfs(x+1),dfs(x+2)+home[x]);
    mem[x]=sum;
    return sum;
}
int main(){
    cin>>t;
    while(t--){
        cin>>n;
        for(int i=1;i<=n;i++){
            cin>>home[i];
        }
        memset(mem,0,sizeof(mem));//不能使用上一轮的数
        int res=dfs(1);
        cout<<res<<endl;
    }
    return 0;
}

递推的code:

#include<iostream>
using namespace std;
const int N=100010;
int n,t;
int home[N];
int f[N];
int main(){
    cin>>t;
    while(t--){
        cin>>n;
        for(int i=1;i<=n;i++){
            cin>>home[i];
        }
        memset(f,0,sizeof(f));//不能使用上一轮的数
        for(int i=n;i>=1;i--){
            f[i]=max(f[i+1],f[i+2]+home[i]);//递推从f[n]开始递推算出f[1],输出f[1];
        }
        cout<<f[1]<<endl;
    }
    return 0;
}

正推code:

#include<iostream>
using namespace std;
const int N=100010;
int n,t;
int home[N];
int f[N];
int main(){
    cin>>t;
    while(t--){
        cin>>n;
        for(int i=1;i<=n;i++){
            cin>>home[i];
        }
        memset(f,0,sizeof(f));//不能使用上一轮的数
        for(int i=1;i<=n;i++){
            //f[i]=max(f[i-1],f[i-2]+home[i]);//递推从f[n]开始递推算出f[1],输出f[1];
            //防止越界所以都加2
            f[i+2]=max(f[i+1],f[i]+home[i]);
        }
        cout<<f[n+2]<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值