动态规划-子序列问题——446.等差数列划分II

1.题目解析

题目来源:446.等差数列划分II

测试用例

2.算法原理

1.状态表示

这里如果使用一维dp表,那么dp[i]表示的就是以第i个位置为结尾前面包含的所有等差子序列的个数,但是此时如果想要向后寻找新的数判断其是否构成等差子序列就没有办法知道公差也就无法找到该数字,说明一维dp表显然无法满足这里的状态表示,所以需要使用二维dp表来表示

即dp[i][j]:以第i与第j个位置为最后两个数字(i<j)所构成的等差子序列的所有个数

2.状态转移方程

小tips:

1.当需要找到离倒数第二个位置最近的满足等差子序列的数字需要固定倒数第二个位置移动倒数第一个位置来寻找

2.而需要遍历每一个在倒数第二个位置之前可以构成等差子序列的数字则需要固定倒数第一个数字移动倒数第二个数字

当移动倒数第二个位置找到了满足条件的倒数第三个位置k时,此时说明dp[k][i]一定存在,则j就是紧跟在i后面的等差子序列的数字,也就是dp[i][j]是dp[k][i]的所有等差子序列个数+1即可,则

状态转移方程为:dp[i][j] += dp[k][i]+1;

3.初始化

填dp表没有需要用到其初始的值,全部置为0即可

4.填表顺序

从左到右填表

5.返回值

返回dp表所有值的和

3.实战代码

代码解析 

class Solution {
public:
    int numberOfArithmeticSlices(vector<int>& nums) {
        int n = nums.size();
        unordered_map<long long, vector<int>> hash;
        for (int i = 0; i < n; i++) {
            hash[nums[i]].push_back(i);
        }
        vector<vector<int>> dp(n, vector<int>(n));
        int sum = 0;
        for (int j = 2; j < n; j++) {
            for (int i = 1; i < j; i++) {
                long long a = (long long)2 * nums[i] - nums[j];
                for (auto k : hash[a]) {
                    if (k < i) {
                        dp[i][j] += dp[k][i] + 1;
                    }
                }
                sum += dp[i][j];
            }
        }
        return sum;
    }
};

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值