一、树
树的概念
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成的一个具有层次关系的集合。
树的特点
有一个特殊的节点,称为根结点,根节点没有前驱结点。
除了根结点之外,其余结点被分成M(M>0)个互不相交的集合T1,T2...Tm,其中每一个集合又是一颗结构与树类似的子树。
每颗子树的根结点有且仅有一个前驱,可以有0个或多个后继。
因此,树是递归定义的。
树的专有名词
1.结点的度:一个节点含有子树的个数称为该结点的度。
2.叶子结点(终端节点):度为0的结点。
3.分支结点(非终端节点):度不为0的结点。
4.父结点(双亲结点):若一个节点含有子结点,则这个结点称为其子节点的父结点。
5.子结点(孩子结点):一个结点含有的子树的根称为该结点的子结点。
6.兄弟结点:含有相同父结点的结点互成为兄弟结点。
7.树的度:一棵树中,最大的节点的度称为树的度。
8.结点的层次:从根开始定义,根为第一层,根的子结点为第二层,依次类推。
9.树的高度(树的深度):树中结点的最大层次。
10.堂兄弟结点:双亲在同一层的结点互称为堂兄弟结点。
11.节点的祖先:从根到该结点所经分支上的所有结点。
12.子孙:以某结点为根的子树中任一结点都称为该结点的子孙。
13:森林:由m(m>0)棵互不相交的树组成的集合称为森林。
树的表示
树的表示比较复杂,要存储和表示出来比较麻烦,实际中树有很多表示方法:双亲表示法、孩子表示法、孩子兄弟表示法等等。最常用的是孩子兄弟表示法。
typedef int Datatype;
struct node
{
struct node* firstChild;
struct node* nextBrother;
};
对于任意的树,我们都可以通过孩子兄弟表示法来访问到每个结点:
树在实际中的应用(表示文件系统的目录树结构)
二、二叉树
二叉树的概念
自然界中的二叉树
数据结构中的二叉树
特殊的二叉树
满二叉树:一个二叉树,如果每一层的结点都达到了最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为k,且节点总数是-1,则它就是满二叉树。它是一种特殊的完全二叉树。
完全二叉树:完全二叉树是效率很高的数据结构。对于深度为K,有N个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至N的节点一一对应时称之为完全二叉树。
二叉树的性质
性质一:若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有个结点。
性质二:若规定根结点的层数为1,则深度为h的二叉树的最大结点数为-1个。
性质三:对任意一棵二叉树,如果度为0的叶结点个数为,度为2的分支结点个数为
,则有
=
+1。
性质四:若规定根结点的层数为1,则具有N个结点的满二叉树的深度。
性质五:对于具有N个结点的完全二叉树,如果按照从上至下、从左至右的数组顺序对所有结点从0开始编号,则对于序号为i的结点:
若i>0,则该结点的父结点序号为:(i+1)/2;若i=0,则无父结点。
若2i+1<N,则该结点的左孩子结点为2i+1;若2i+1>=N,则无左孩子。
若2i+1<N,则该结点的右孩子结点为2i+2;若2i+2>=N,则无右孩子。
练习题
1.某二叉树共有399个结点,其中199个度为2的结点,则该二叉树中的叶子结点数为( )。
A.不存在这样的二叉树
B.200
C.198
D.199
2.在具有2n个结点的完全二叉树中叶子结点个数为( )。
A.n
B.n+1
C.n-1
D.n/2
3.一棵完全二叉树的结点数为531,那么这棵树的高度为( )。
A.11
B.10
C.8
D.12
4.一个具有767个结点的完全二叉树,其叶子结点个数为( )。
A.383
B.384
C.385
D.386
答案:
1.(B)根据性质三,叶子结点(度为0)的个数是200个,由于199+200=399(该二叉树的总结点数),所以该二叉树的叶子结点数是200.
2.(A)根据性质三,度为0的结点数和度为2的结点数之和应为奇数,因为该完全二叉树的结点总数为2n(偶数),所以二叉树中必然存在一个度为1的结点。于是可以推出:度为0的结点和度为2的结点总共有2n-1个。性质三:对任何一棵二叉树,度为0的叶结点个数比度为2的分支结点个数多1,所以该二叉树度为2的结点个数为n-1,度为0的结点数(即叶结点数)为n。
注意理解:任何一棵完全二叉树中度为1的结点要么有1个,要么就没有。完全二叉树的最后一层的结点必须是从左到右连续的。
3.(B)假设该完全二叉树的层数为K,则该完全二叉树的前K-1层的结点总数为,若该完全二叉树是满二叉树,则该满二叉树的结点总数为
,所以深度为K的完全二叉树结点总数范围为:
。因为
,所以该完全二叉树的高度为10。
4.(B)因为该树的结点总数为767(奇数),所以该树中不存在度为1的结点,因为度为2的结点个数为383,所以度为0的结点个数为384,即叶子结点个数为384。
三、二叉树的存储结构
顺序结构
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实生活中只有堆(一种二叉树)才会使用数组来存储。二叉树的顺序存储在物理上是一个数组,在逻辑上是一棵二叉树。
链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素之间的逻辑关系。通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来存储该结点左孩子和右孩子所在的结点的地址。
链式结构又分为二叉链和三叉链,之后我们会用二叉链来实现二叉树的链式存储结构,三叉链运用于更高阶的数据结构,例如红黑树。