多维时空数据介绍(3)局部异常值分析

本文介绍了时空数据的局部异常值分析,包括其实现原理、工具参数、输出结果的详细解析,以及与新兴时空热点分析的区别。通过局部异常值分析,可以识别出高值或低值的空间聚类和异常值,帮助理解数据中的异常模式。
摘要由CSDN通过智能技术生成

01、局部异常值分析

局部异常值工具可识别具有高值或低值的要素是否存在空间聚类和异常值。聚类是指高值周围围绕高值,低值周围围绕低值,异常值是指高值周围围绕低值,低值周围围绕高值的情况。

局部异常值分析示意

1. 实现原理

它的实现原理大致如下:

使用时空邻域的值(局部值)执行各条柱的聚类和异常值分析(Anselin Local Moran's I 统计),得出Local Moran's I 指数、伪P值和类型编码 (CO_TYPE),结合上述结果,判断其聚类或异常值情况。

2. 工具参数

根据上述原理,来拆解一下重要参数。

局部异常值分析工具

会发现这个工具除排列数参数外,其他参数与新兴时空分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YXGiser

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值