首先,先得在maven_2023下建一个目录data,在data下建一个log.txt文件。
接着点开log.txt文件,把数据填入,内容可以用豆包或者Kimi搜索出来,必须是三个属性:手机号,上行流量,下行流量,用空格隔开。
然后,创建如图下的f目录和目录下Java类。
//1.FlowBean.java代码
package com.example.flow;
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
//hadoop 序列化
//三个属性:手机号,上行流量,下行流量
public class FlowBean implements Writable {
private String phone;
private long upFlow;
private long downFlow;
public FlowBean(String phone, long upFlow, long downFlow) {
this.phone = phone;
this.upFlow = upFlow;
this.downFlow = downFlow;
}
//定义get/set方法
public String getPhone() {
return phone;
}
public void setPhone(String phone) {
this.phone = phone;
}
public long getUpFlow() {
return upFlow;
}
public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
}
public long getDownFlow() {
return downFlow;
}
public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
}
//定义无参构造
public FlowBean() {}
//定义一个获取总流量的方法
public long getSumFlow() {
return upFlow + downFlow;
}
@Override
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeUTF(phone);
dataOutput.writeLong(upFlow);
dataOutput.writeLong(downFlow);
}
@Override
public void readFields(DataInput dataInput) throws IOException {
phone = dataInput.readUTF();
upFlow = dataInput.readLong();
downFlow = dataInput.readLong();
}
}
//2.FlowDriver.java代码
package com.example.flow;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
//提交job的类,一共做7件事
public class FlowDriver {
public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
//1.获取配置,得到job对象
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
//2.设置jar包路径
job.setJarByClass(FlowDriver.class);
//3.关联Mapper和Reducer
job.setMapperClass(FlowMapper.class);
job.setReducerClass(FlowReducer.class);
//4.设置Mapper输出类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);
//5.设置resucer的输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//6.设置输入和输出路径
FileInputFormat.setInputPaths(job, new Path("data"));
FileOutputFormat.setOutputPath(job, new Path("output"));
// 7. 提交job
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}
//3.FlowMapper.java代码
package com.example.flow;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
//1.继承Mapper
//2.重写map函数
public class FlowMapper extends Mapper<LongWritable, Text,Text,FlowBean> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//1.获取一行数据,使用空格拆分
//手机号就是第一个元素
//上行流量就是第二个元素
//下行流量就是第三个元素
String[] split = value.toString().split(" ");
String phone = split[0];
Long upFlow = Long.parseLong(split[1]);
Long downFlow = Long.parseLong(split[2]);
//2.封装对象
FlowBean flowBean = new FlowBean(phone,upFlow,downFlow);
//3.写入手机号为key,值就是这个对象
context.write(new Text(phone),flowBean);
}
}
//4.FlowReducer.java代码
package com.example.flow;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
//1.继承reducer
//2.重写reduce函数
public class FlowReducer extends Reducer<Text,FlowBean,Text, Text> {
@Override
protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
//1.遍历集合,取出每一个元素,计算上行流量和下行流量的汇总
long upFlowSum = 0L;
long downFlowSum = 0L;
long sumFlow = 0L;
for (FlowBean flowBean : values) {
upFlowSum += flowBean.getUpFlow();
downFlowSum += flowBean.getDownFlow();
sumFlow+= flowBean.getSumFlow();//计算总的汇总
}
String flowDesc=String.format("总的上行流量是:%d,总的下行流量是:%d,总流量是:%d",upFlowSum,downFlowSum,sumFlow);
context.write(key,new Text(flowDesc));
}
}