线性dp;
·设f[i]表示走到标号为i的格子时的冰冻指数和最大值,并用数组a存储第i个格子的冰冻指数。
·状态转移方程:f[i]=max{ f[i-R],f[i-R+1],f[i-R+2],··· ,f[i-L] }+a[i];
·对每个f[i],需要知道f[i-R]...f[i-L]中的最大值,暴力求解,复杂度比较大,会超时。
·而这个滑动区间最大值,不禁让我想到用单调队列优化求解。
看下面这组数据:
5 3 4 0 1 2 3 4 5
4
并非所有L到n的状态f 都可以直接转移,需要特殊处理一下。
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N=2e5+10;
int n,L,R,ans=-1e18;
int f[N],a[N];
void solve()
{
memset(f,-0x3f,sizeof(f));
f[0]=0;
deque<int>q;
for(int i=L;i<=n;i++)
{
while(q.size()&&f[i-L]>f[q.front()]) q.pop_front();
q.push_front(i-L);
if(q.back()<i-R) q.pop_back();
if(f[q.back()]!=-0x3f)
f[i]=a[i]+f[q.back()];
}
}
signed main()
{
ios::sync_with_stdio(0);cin.tie(0);
int ans=-1e9;
cin>>n>>L>>R;
for(int i=0;i<=n;i++) cin>>a[i];
solve();
for(int i=n-R+1;i<=n;i++) ans=max(ans,f[i]);
cout<<ans;
}
//5 3 4 0 1 2 3 4 5
//4
24/8/3