洛谷·琪露诺

线性dp;

·设f[i]表示走到标号为i的格子时的冰冻指数和最大值,并用数组a存储第i个格子的冰冻指数。

·状态转移方程:f[i]=max{ f[i-R],f[i-R+1],f[i-R+2],··· ,f[i-L] }+a[i];

·对每个f[i],需要知道f[i-R]...f[i-L]中的最大值,暴力求解,复杂度比较大,会超时。

·而这个滑动区间最大值,不禁让我想到用单调队列优化求解。

看下面这组数据:

5 3 4 0 1 2 3 4 5

4

并非所有L到n的状态f 都可以直接转移,需要特殊处理一下。

#include<bits/stdc++.h> 
using namespace std;
#define int long long
const int N=2e5+10;
int n,L,R,ans=-1e18;
int f[N],a[N];
void solve()
{
	memset(f,-0x3f,sizeof(f));
	f[0]=0;
	deque<int>q;
	for(int i=L;i<=n;i++)
	{
		while(q.size()&&f[i-L]>f[q.front()]) q.pop_front();
		q.push_front(i-L);
		if(q.back()<i-R) q.pop_back();
		if(f[q.back()]!=-0x3f)
		f[i]=a[i]+f[q.back()];
	}
}
signed main()
{
	ios::sync_with_stdio(0);cin.tie(0);
	int ans=-1e9;
	cin>>n>>L>>R;
	for(int i=0;i<=n;i++) cin>>a[i];
	solve();
	for(int i=n-R+1;i<=n;i++) ans=max(ans,f[i]);
	cout<<ans;
}
//5 3 4 0 1 2 3 4 5
//4

24/8/3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值