Spark概述极其运行模式

本文介绍了ApacheSpark,一个多语言引擎,用于高效执行数据处理、科学计算和机器学习。文章详细比较了Spark与HadoopMapReduce在内存计算、运行速度、编程模型和数据处理方式等方面的差异,并探讨了Spark的组件如SparkSQL、SparkStreaming、MLlib和GraphX。此外,还解释了Spark的运行模式,如Standalone、Mesos和YARN,以及核心原理中的窄依赖和宽依赖概念。
摘要由CSDN通过智能技术生成

spark是什么?

    Apache Spark™ is a multi-language engine for executing data engineering, data science, and machine learning on single-node machines or clusters.(Apache Spark™是一个多语言引擎,用于在单节点机器或集群上执行数据工程、数据科学和机器学习)

Spark和Hadoop MapReduce的区别

   共同点:都是两种常用的大数据处理框架

  1. 内存计算能力:Spark具有内存计算能力,可以将数据存储在内存中进行快速计,而MapReduce则需要将数据写入盘,导致开销较大。

  2. 运行速度:由于Spark的内存计算能力,相对于MapReduce它可以更快地处理大规模数据。Spark采用了弹性分布式数据集(RDD)的概念,可以在内存中缓存数据,从而避免了磁盘IO的开销。Spark的运行速度是Hadoop MapReduce运行速度的100多倍。一般情况下,对于迭代次数较多的应用程序

    内存运行速度 磁盘运行速度
    spark 100x 10x
    Hadoop MapRrduce x x

  3. 编程模型:Spark提供了更为灵活的编程模型,支持多种编程语言(如Scala、Java、Python和R),并且提供了丰富的高级API(如Spark SQL、Spark Streaming和MLlib等),使得开发者可以更方便地进行数据处理和分析。而MapReduce则需要使用Java编程语言,并且编写Map和Reduce函数。

  4. 数据处理方式:Spark支持多种数据处理方式,包括批处理、交互式查询和流式处理等,而MapReduce主要用于批处理任务。

  5. 容错性:Spark具有更好的容错性,当节点发生故障时,可以快速恢复并继续执行任务。而MapReduce需要将中间结果写入磁盘,导致容错性较差。

 结构化和非结构化,半结构化数据是什么?

1.结构化数据:即行数据,存储在数据库里,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值