- 博客(215)
- 收藏
- 关注
原创 Prisma 计划实录:Doubao-Seed-Code赋予代码「审美力」,想象即落地
在传统的开发流程里,从“视觉灵感”到“代码落地”之间,往往隔着一道厚厚的墙:我们需要切图、量像素、写繁琐的 CSS。很多时候,即兴的灵感就在这个过程中被磨灭了。但这次使用 Doubao-Seed-Code 的经历,让我感觉这道墙被打破了。这不是一篇枯燥的模型能力分析报告,而是我作为一名开发者,与 AI 共同完成一次“视觉重塑”的实录。我尝试抛开那些条条框框,直接把我的手绘草图“喂”给模型,看看在不写一行样式的代码前提下,它能带我走多远。结果是,我们共同完成了一个名为Prisma UI的项目。
2025-11-22 13:58:30
50909
8
原创 CodeBuddy IDE实战:用AI全栈能力快速搭建课程表网页
在数字化开发的浪潮中,工具的革新往往是效率跃迁的起点。腾讯云 CodeBuddy IDE 是 “全球首个产设研一体 AI 全栈开发平台” ,它不仅打破了产品、设计与研发的职能壁垒,更重新定义了 “从想法到落地” 的开发节奏 —— 无需繁琐的工具切换,无需复杂的技术储备,仅通过自然语言交互与 AI 协同,就能让创意快速转化为可落地的产品。而我有幸成为产品的内测体验者,我将从介绍codebuddy核心优势到利用产品打造一个网页深度体验测评 CodeBuddy IDE。
2025-07-23 11:10:42
17585
1
原创 MCP实战|基于 Chatbox AI打造 “任务拆解助手”,告别拖延低效!
Chatbox AI,办公学习好助手。Chatbox AI 是一款 AI 客户端应用和智能助手,支持众多先进的 AI 模型和 API,可在 Windows、MacOS、Android、iOS、Linux 和网页版上使用。Chatbox 软件有多种用途,但作为一个模型 API 和本地模型的连接工具,其主要功能一直都是完全免费的。得益于 Chatbox AI工具的强大,“任务拆解助手”在任务拆解上,展现出清晰的逻辑。将大目标细化为多个可执行步骤,从目标设定到后续跟踪调整,形成完整流程。
2025-06-25 08:00:00
43266
131
原创 调用大模型API打造AI 智能客服系统实践教程
在用户与人工客服的沟通中,等待时间长、需求难满足等问题频发,企业面临用户流失风险,用户渴望快速精准的答案,企业需要“开源节流”、“降本增效”。对此,利用 AI 大模型打造智能客服成为主流解决方案。本次将调用大模型 API,实操构建一个具备知识库的 AI 智能客服系统,有效化解沟通难题。
2025-06-02 12:19:50
12833
177
原创 CANN ATVOSS:赋能 Ascend AI 处理器视频开源智能生态
在人工智能时代,视频数据正以前所未有的速度增长,成为信息传播和智能应用的核心载体。从智能安防、自动驾驶到智慧城市、工业检测,视频智能分析技术在各个领域都展现出巨大的潜力。然而,视频数据的海量性、高维度和实时性要求,使得对其进行高效的编解码、预处理和深度分析,成为一个极具挑战性的任务。传统的处理方式往往难以满足边缘侧和云端日益增长的性能与能效需求。仓库,作为华为CANN。
2026-02-10 16:46:50
196
原创 atvoss:异构计算AI算子自动调优与调度引擎,释放硬件极致性能
metadefatvoss不仅优化了内置算子,更提供了强大的机制,赋能开发者对自定义算子进行自动化性能调优。将自定义算子接入atvoss可调参数的描述:在定义自定义算子时,除了其输入输出和属性,还需要明确指定哪些内部参数是可调的,以及它们的取值范围和约束。调优接口的实现:提供一个接口,允许atvoss能够生成不同的参数组合,并能够调用自定义算子的代码进行性能测试。元定义注册:通过metadef体系,将自定义算子的可调参数信息注册到整个异构计算AI软件栈中。atvoss。
2026-02-10 16:46:18
238
原创 专用 AI 处理器上的虚拟化与资源调度:atvoss 深度解析
atvoss作为 CANN 软件栈中的核心虚拟化与资源调度软件,是实现专用 AI 处理器高效、安全、稳定运行的关键。它通过精妙的资源虚拟化、灵活的调度策略和严格的隔离机制,将物理 AI 处理器资源抽象为可编程、可管理的虚拟设备,从而有效解决了多任务、多用户场景下的资源管理难题。atvoss的存在,不仅大幅提升了专用 AI 处理器的整体利用率和性能可预测性,保障了 AI 工作负载的服务质量,更简化了 AI 基础设施的部署和运维。展望未来,atvoss。
2026-02-10 16:45:47
237
原创 atvoss:AI 处理器上的智能语音与多媒体解决方案,赋能高效实时交互
atvoss中所有算子的正确性与兼容性,都得益于metadef算子原型规范atvoss中的每个音视频处理算子,如 FFT、MelFilterbank、ColorConvert 等,都严格遵循metadef定义的算子原型,包括其输入输出张量、数据类型、形状和格式。形状与类型推导atvoss的算子提供了精确的形状和数据类型推导函数。这些函数在编译时被ge调用,以确保计算图中各张量属性的正确性,并辅助进行内存分配和优化。统一接口:通过metadefatvoss。
2026-02-10 16:45:16
333
原创 CANN OPS-Transformer:赋能大型模型的高效算子库
对于需要实现特定 Transformer 变体或前沿研究的开发者,CANN也提供了扩展能力。TBE / Ascend C 开发:开发者可以利用TBE(Tensor Boost Engine) 或Ascend C语言,基于CANN的算子开发框架,编写自己的高性能 Transformer 算子。Metadef定义与注册:为了让GE识别和调度自定义算子,开发者需要按照的规范,为新算子定义其输入输出、属性和形状推导等元数据。集成到CANN工具链:完成开发和定义后,通过CANN。
2026-02-10 16:43:27
254
原创 使用 ops-transformer 算子库加速大型Transformer模型推理
尽管自定义算子集成:如果模型使用了尚未支持的Transformer变体或自定义操作,开发者可以根据metadef(例如) 中提供的算子定义规范,编写自己的自定义算子并集成到库中。编译参数配置:开发者可以通过编译器提供的接口,配置特定的优化选项,例如:强制使用FP16或INT8精度。启用或禁用某些算子融合策略。针对特定批处理大小进行进一步优化。模型剪枝与稀疏化:结合对稀疏性的支持,开发者可以对Transformer模型进行剪枝,以在保持性能的同时,进一步减少模型大小和推理延迟。
2026-02-10 16:42:54
305
原创 优化 Transformer 算子,赋能专用 AI 处理器高性能计算:ops-transformer 深度剖析
中的所有优化算子,其定义都遵循metadef的规范。算子接口统一中的每个算子都会通过metadef定义其名称、输入、输出、属性、形状推断和数据类型推断函数。这确保了这些专用算子能够被 CANN 生态系统中的其他工具(如模型转换器 ATC、图编译器 GE)正确识别和处理。兼容性保证:通过metadef提供的规范,中的算子能够与 CANN 平台上的其他通用算子和自定义算子保持良好的兼容性。便于扩展:当有新的 Transformer 变体或其核心组件需要优化时,开发者可以参照metadef的规范,在。
2026-02-10 16:42:22
387
原创 Transformer 算子加速:CANN ops-transformer 仓库,深度优化大型模型计算
ops-transformer 并非孤立存在,它深度融入 CANN 软件栈,实现从算子定义到模型执行的端到端优化。开放式框架:ops-transformer 遵循 CANN 的算子开发规范,开发者可以基于此框架,编写针对 AI 处理器的自定义 Transformer 算子 Kernel。元数据注册:自定义算子同样需要提供详细的元数据(通过 metadef 规范),包括形状推导、类型推导等,确保其能被 CANN 编译器正确识别和处理。无缝集成。
2026-02-10 16:41:09
347
原创 Prometheus+cpolar 实现监控警告教程
Prometheus、node_exporter、Alertmanager 这套组合是中小团队和个人运维的实用工具,Prometheus 能精准采集 CPU、内存等服务器核心指标
2026-02-10 12:54:39
12942
15
原创 Catlass 算子模板库:异构计算核心算力引擎的极致优化秘籍
在深度学习的浩瀚计算需求中,矩阵乘法(GEMM - General Matrix Multiply)扮演着基石般的角色。无论是神经网络的前向推理、反向传播,还是 Transformer 架构中的自注意力机制,都离不开高效的 GEMM 运算。Catlass仓库正是为了在异构计算硬件上实现 GEMM 及其相关融合操作的极致性能而生。它不是一个简单的库,而是一套精巧的算子模板系统,将复杂的硬件特性抽象化,使得开发者能够以更高效的方式驾驭底层算力。Catlass算子模板库在异构计算软件栈中占据了至关重要的战略地位。
2026-02-07 00:09:12
355
原创 Catlass 深度解析:面向异构架构的高性能矩阵运算模板库
Catlass 算子模板库是 CANN 架构中实现深度学习模型高性能运算的核心引擎。它通过精妙的 C++ 模板元编程技术,将极致优化的 GEMM 内核与专用的 AI 处理器硬件特性紧密结合。其在数据布局、混合精度支持以及算子融合方面的深度优化,有效解决了“计算墙”和“访存墙”问题,确保了 Cube Unit 等核心计算单元能够以最高效率持续运行。对于开发者而言,掌握 Catlass 的底层逻辑和优化策略,意味着能够更深入地理解异构计算的本质,并具备开发出针对特定模型和硬件环境的极致性能算子的能力。
2026-02-07 00:09:07
303
原创 Catlass:赋能 AI 处理器极致 GEMM 性能的矩阵模板库
Catlass算子模板库是 CANN 架构中实现高性能矩阵运算的基石。它通过深度融合 C++ 模板元编程的灵活性、对 AI 处理器 Cube Unit 的精细化 Tiling 适配,以及先进的算子融合技术,有效地解决了深度学习计算中的访存和计算瓶颈。Catlass极大地简化了开发者在 AI 处理器上实现极致 GEMM 性能的复杂性,为 AI 模型提供了最直接、最高效的线性代数加速能力。掌握Catlass不仅能够提升算子开发效率,更是释放 AI 处理器强大矩阵计算潜力的关键。
2026-02-07 00:09:03
254
5
原创 深度剖析 CANN Runtime:AI 计算架构的智能调度核心
Runtime 提供了一套完整的机制,允许开发者注册和集成自定义算子。算子开发工具链:通过 Ascend C 或其他自定义算子开发工具,开发者可以针对特定数学逻辑编写高性能的算子实现。算子注册接口:Runtime 提供了 API 接口,允许将编译好的自定义算子动态或静态地注册到算子库中。注册时需要提供算子的输入/输出描述、属性以及执行逻辑的映射。自动调度。
2026-02-07 00:08:51
406
原创 GE 图引擎:异构计算深度学习图优化的核心驱动与智能大脑
算子注册与匹配:GE 维护一个算子库,包含每个算子的输入输出规范、属性列表和默认行为。解析过程中,GE 会将模型中的算子与内部库进行匹配。动态 Shape 与静态 Shape:GE 需要处理模型中可能存在的动态输入形状。对于动态 Shape,GE 会引入动态 Shape 机制,或者在特定场景下将其转化为静态 Shape 进行编译。量化信息:如果模型包含量化信息(如 INT8),GE 会解析这些信息,并在后续的优化阶段利用它们生成量化算子。
2026-02-07 00:08:20
472
原创 异构计算 Runtime 深度剖析:连接软件算法与硬件指令的指挥中枢
Runtime是算子生态的看守者,它不仅提供对官方优化算子(如ops-nn)的调度,更开放了接口,允许开发者通过自定义算子来扩展硬件功能。Runtime为自定义算子的集成提供了一套完整的生命周期管理机制,确保开发者编写的Ascend C代码能够被编译、加载并正确执行。自定义算子在asc-devkit核函数 (Kernel Function):使用Ascend C编写的设备端代码,实现了算子的具体计算逻辑,通常运行在 AI Core 上。它接收作为输入,操作数据,并产生输出。
2026-02-07 00:07:47
550
原创 深入 ops-nn:异构计算下数据布局与混合精度的高效实践
在 AI 异构计算的演进中,底层算子库的性能是决定整体系统效率的关键。ops-nn作为 CANN 架构的核心算子库,其设计哲学深入到硬件层面,旨在通过精细的数据布局、灵活的混合精度策略和智能的算子融合,最大限度地释放专用 AI 处理器(如达芬奇架构)的计算潜能。本文将聚焦于ops-nn在数据布局和混合精度计算上的技术实践,揭示其如何平衡计算速度、内存效率与模型精度。
2026-02-07 00:07:12
439
原创 智能诊断与维护:oam-tools 如何简化 AI 处理器故障定位
收集到信息包后,利用 oam-tools 进行初步分析。生成报告:oam-tools 可以生成一份包含环境检查结果、硬件状态、错误码解析和日志摘要的诊断报告。区分错误类型:通过报告,开发者可以快速区分错误是来源于硬件异常(如 ECC 错误)、系统配置问题(如驱动不兼容)还是软件逻辑错误(如 AI Core 校验失败,通常指向算子实现问题)。
2026-02-07 00:06:43
563
原创 PyPTO 范式:异构计算算子开发的自动化流水线与高层抽象
PyPTO范式是 CANN 算子生态发展的重要里程碑,它通过引入高层抽象、自动化 Tiling 和智能流水线调度,极大地简化了异构计算算子的开发过程。它让开发者能够从繁琐的底层细节中解脱出来,更专注于算子的数学逻辑和创新。特别是在面对稀疏计算这种对硬件访存和计算效率提出严峻挑战的场景时,PyPTO的智能调度和数据流建模能力展现出巨大的潜力,有望克服传统方法在性能和开发复杂度上的瓶颈。PyPTO。
2026-02-07 00:02:10
623
原创 CANN Runtime:异构计算环境中算子安全与跨平台执行保障
清晰、准确地定义算子的版本和属性是Runtime成功加载和匹配算子的前提。语义化版本控制:为自定义算子采用语义化版本控制(Semantic Versioning),例如v1.0.0,当算子功能、接口或行为发生不兼容变更时,更新主版本号。详细属性声明:在算子注册时,尽可能详细地声明所有支持的属性及其有效取值范围。这有助于Runtime进行精确匹配,并减少因属性不明确导致的运行时错误。文档先行:为自定义算子编写清晰的文档,详细说明其功能、输入输出约定、支持的属性、性能特点以及任何潜在的限制或已知问题。
2026-02-07 00:00:55
570
原创 CANN GE: AI 处理器计算图优化的核心引擎
在 AI 异构计算领域,实现深度学习模型在专用处理器上的高效运行,并非仅仅依靠强大的硬件算力。软件栈的优化水平同样至关重要。作为 CANN 软件栈的核心组件,扮演着连接上层深度学习框架(如 PyTorch、TensorFlow、MindSpore)与底层 AI 处理器硬件的关键桥梁。GE 的核心职能在于将前端框架输入的、逻辑层面的计算图,通过一系列复杂的图编译和优化转换,生成适配 AI 处理器硬件特性、能够实现低延迟和高吞吐量执行的指令序列。
2026-02-06 23:02:24
137
原创 解锁专业领域算力:深入解析 CANN SIP 算子库在异构计算中的应用
CANN SIP 算子库是 AI 处理器生态系统面向专业领域计算的重要延伸。它通过对快速傅里叶变换、FIR/IIR 滤波等核心信号处理算法的硬件级深度优化、精巧的数据流管理、以及强大的算子级融合能力,为用户提供了在 AI 处理器上实现高效、高精度信号处理的强大工具。SIP 算子库的价值不仅体现在为特定专业应用提供极致性能,更在于它拓宽了 AI 处理器的应用边界,使其不再局限于传统的深度学习任务,而是能够赋能更广泛的科学计算和工程领域。
2026-02-06 23:01:31
214
原创 oam-tools:异构计算故障诊断与运维利器,加速问题定位与系统稳定性
oam-tools 项目构建了 CANN 异构计算系统可靠性的重要保障体系。它通过自动化、标准化的方式解决了复杂分布式环境下的故障信息采集难题,特别是对 AI Core 级别错误的解析能力,极大地加速了自定义算子(如 Ascend C 开发的 TBE 算子)的迭代速度和系统维护的可靠性。
2026-02-06 23:00:42
238
原创 CANN SIP:赋能专业信号处理的硬件加速核心
CANN SIP 算子库通过将 FFT、滤波等专业信号处理算法映射到 NPU 的 Vector 和 Cube 单元,实现了对传统计算场景的突破性加速。其核心能力在于对复数运算的硬件级优化、高效的 Tiling 策略以及对高精度计算的保障。SIP 算子库为 CANN 架构在专业信号分析领域的应用提供了强大的算力基础。
2026-02-06 22:59:37
239
原创 SIP 信号处理算子库:异构计算赋能专业领域高性能信号处理
CANN SIP算子库通过其深度硬件优化的 FFT、滤波及复数运算能力,为雷达、通信、声学等信号处理专业领域带来了革命性的加速。它不仅解决了传统通用处理器在处理这些计算密集型任务时的性能瓶颈,更通过精细的 Tiling 策略、复数指令利用和内存布局优化,实现了在异构计算处理器上的极致性能。
2026-02-06 22:58:55
258
原创 oam-tools:CANN 异构计算故障诊断与性能分析利器
oam-tools不仅是当前 CANN 异构计算环境中的一个重要诊断工具,更是未来 AI 芯片系统可靠性和可维护性发展方向的一个缩影。
2026-02-06 22:58:21
330
原创 GE 图引擎:异构计算深度学习图优化的核心驱动与智能大脑
除了数据流,GE算子注册与匹配GE维护一个全面的算子库,包含每个算子的输入输出规范、属性列表和默认行为。解析过程中,GE会将模型中的算子与内部库进行匹配,确保其语义的正确性。动态 Shape 与静态 Shape 处理GE需要处理模型中可能存在的动态输入形状。对于动态 Shape,GE会引入动态 Shape 机制,或者在特定场景下将其转化为静态 Shape 进行编译,以平衡灵活性和性能。量化信息:如果模型包含量化信息(如 INT8),GE。
2026-02-06 22:56:41
236
原创 GE 深度解析:专用 AI 处理器上的智能图编译与执行引擎
CANN GE 是一个复杂而强大的图编译器和执行引擎。它通过精细的算子融合、静态内存规划、数据布局优化、Stream 调度以及模型下沉等一系列深度优化机制,将高层级的神经网络逻辑高效地转化为低延迟、高吞吐的硬件执行任务。GE 的能力是实现高性能异构计算的关键,也是确保深度学习模型在不同部署场景下(推理、训练、动态输入)都能发挥最佳性能的核心所在。它的存在,极大地加速了人工智能技术从理论到实践的落地过程。CANN 组织链接GE 仓库链接。
2026-02-06 22:55:55
327
原创 用飞算AI工具箱重构我的毕业设计:一个Java商城项目的效率革命
回看我的“免税商品优选购物商城”,它曾是一个勉强及格的课程作业;经飞算AI工具箱重构后,它变成了一份可写进简历的准生产级项目。飞算JavaAI专业版的价值,不在于炫技,而在于把工程最佳实践,变成每个开发者触手可及的能力。尤其对正在做毕设、课程设计的Java学生,它是提升质量、节省时间、增强竞争力的秘密武器。现在注册即可免费领取1000万Tokens。用AI工具箱,给你的毕业设计加个“专业Buff”!参加官方组织的炫技赛,领京东卡、年货大礼包等三重大奖。
2026-02-05 18:37:23
20548
原创 贪心算法-递增的三页子序列
问题本质:该问题是「最长递增子序列(LIS)」的特例,只需判断 LIS 长度是否 ≥ 3。算法对比动态规划适用于需要完整计算 LIS 长度的场景,但时间复杂度较高;贪心解法针对「判断是否存在长度为3的递增子序列」做了优化,时间、空间效率更优。贪心策略的核心:维护最小的可能末尾值,让后续更容易找到更长的递增子序列,从而提升效率。
2026-02-03 21:14:33
430
4
原创 贪心算法-最大数
给定一组非负整数,不可拆分单个数字,重新排列顺序,拼接成一个最大的整数。因结果可能极大,需返回字符串而非整数。示例:输入[10,2]→ 输出"210"(因为输入→ 输出"9534330"
2026-01-31 21:23:07
133
1
原创 贪心算法二--将数组和减半的最少操作次数
要让总和最快减少,每次必须选择当前最大的元素进行减半。因为最大元素的减半对总和的“减幅”最大,能以最少步骤达成目标。通过“交换操作步骤”,证明贪心解与最优解的等价性,从而验证贪心策略的最优性。时间复杂度的“取出最大值”和“插入更新后的值”操作,保障算法效率。将数组元素存入大根堆,以便快速获取当前最大值。并将其减半(支持浮点数),目标是让数组总和。大根堆可以高效维护当前数组的最大值,支持。,目标是让总和减少量 ≥。先求出数组所有元素的和。,每次操作选择当前数组。
2026-01-30 22:42:13
384
原创 全能远程神器!节点小宝三连更新:一键挂载 NAS、网关模式开启
节点小宝此次更新完善了产品矩阵,覆盖个人与企业常见使用场景,我也是马上体验了新功能,实际体验下来感觉轻便又快捷。
2026-01-29 12:22:06
32390
关于#人工智能#的问题:做模型量化想找同行交流学习
2025-07-24
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅