基于 GPUGEEK平台进行vLLM环境部署DeepSeek-R1-70B

选择 GPUGEEK 平台的原因

  • 算力资源丰富:GPUGEEK 提供多样且高性能的 GPU 资源,像英伟达高端 GPU 。DeepSeek - R1 - 70B 模型推理计算量巨大,需要强大算力支持,该平台能满足其对计算资源的高要求,保障推理高效运行。
  • 便捷易用:平台具备简洁直观的操作界面,降低了技术门槛,即使对部署细节不太熟悉的用户,也能较轻松地完成模型部署、资源管理等操作。
  • 灵活的资源配置:用户可依据实际需求灵活调整 GPU 资源规格、使用时长等,按需付费,既能满足模型部署的资源需求,又能有效控制成本 。
    image.png
    在模型资源上,样式多样化。像 DeepSeek 系列模型,从不同参数规模的版本一应俱全,为用户提供了多样化的选择,无论是追求极致性能的大型项目,还是轻量级的测试探索,都能在这里找到契合的模型,极大地拓宽了应用场景。
    image.png

算力供应方面,更是展现出强大实力。丰富多样的 GPU 类型,涵盖了从性价比突出的到顶级性能的各种型号,且价格设置合理,按小时计费灵活又实惠。在区域分布上也考虑周全,多个地区节点让用户能就近获取算力,有效降低延迟,保障运算的高效稳定。
image.png

操作体验同样出色。控制台界面简洁明了,基础配置与高级配置分区清晰,计量模式、地区、显卡类型等关键选项一目了然,即使是新手也能快速上手,轻松完成实例创建等操作,大幅提升了工作效率
image.png

GPUGEEK 平台凭借资源丰富、算力强劲、操作便捷等优势,为 AI 开发者和研究者们打造了一个理想的工作平台,如果你想体验下可以点击下面的链接注册哦

什么是vLLM环境部署DeepSeek-R1-70B

vLLM 环境部署 DeepSeek - R1 - 70B” 指的是在 vLLM(一个高效的大语言模型推理引擎 )运行环境中,将 DeepSeek - R1 - 70B 语言模型进行部署,使其能够进行推理并提供服务。

  • 硬件要求:DeepSeek - R1 - 70B 参数量庞大,对硬件性能要求高。推荐使用高性能 GPU,如两块 RTX4090D ,搭配 i9 - 13900K 处理器、ddr5 6000hz 128GB 内存、1200W 电源及 2TB 存储 。若 GPU 显存有限,可能还需考虑磁盘空间作为显存交换区。
  • 软件环境:一般选用 Ubuntu20.04 等 Linux 系统 。需安装适配 GPU 的最新驱动,以及 CUDA 11.8(适配 PyTorch 2.0+ 和 bitsandbytes ) 。
    部署完成后,可结合 OpenWebUI 等工具在浏览器中与模型对话交互 。也可通过编写 Python 脚本,利用相关接口向模型发送请求获取回复 。

但是我们这里的话可以发现这里的硬件要求还是蛮高的,但是没关系,我们这里使用GPUGEEK平台完美解决本地配置达不到的要求

本地部署操作实战

在我们的镜像市场找到deepseek-ai/DeepSeek-R1/vLLM-DeepSeek-R1-70B,直接点击创建实例
image.png
按照我这个样子进行配置
image.png
这里我们稍等一会儿就好了,他这里的实例创建需要时间的
image.png
点击登录,复制相关的账号信息
image.png

#1.复制后的登录指令和登录密码如下
登录指令:ssh -p 42990 root@proxy-qy.gpugeek.com
密码:xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

#2.组建SSH隧道命令
ssh -CNg -L 8080:127.0.0.1:8080 root@proxy-qy.gpugeek.com -p 42990

#root@proxy-qy.gpugeek.com和42990分别是实例中SSH指令的登录地址与登录端口,需找到自己实例的ssh指令做相应替换
#8080是指代理实例内8080端口映射到本地电脑的8080端口来完成SSH隧道连接

我们接下来打开本地电脑的终端并建立SSH隧道连接
在桌面右键点击终端,将我们刚刚复制的两个信息依次复制上去
这个样子就说明我们登录上去了
image.png
执行如上命令后,没有任何输出是正常的。
注意:Windows下的cmd/powershell可能会提示密码错误,是因为无法粘贴,手动输入即可(输入密码时不会显示正在输入的密码)

#2.组建SSH隧道命令
ssh -CNg -L 8080:127.0.0.1:8080 root@proxy-qy.gpugeek.com -p 42990

#root@proxy-qy.gpugeek.com和42990分别是实例中SSH指令的登录地址与登录端口,需找到自己实例的ssh指令做相应替换
#8080是指代理实例内8080端口映射到本地电脑的8080端口来完成SSH隧道连接

可以像我这个样子
image.png然后我们打开浏览器访问 http://localhost:8080 地址打开web页面
image.png
输入好邮箱和密码我们就可以登录上来了
image.png
这里我们就完成了整个操作流程了

总结

在 OpenWebUI 界面可输入问题与模型对话,如提问 “Explain options trading” 等,模型能给出相应回复,标志着整个部署流程顺利完成,达成在浏览器中与 DeepSeek - R1 - 70B 模型交互对话的预期目标。

在实际部署过程中,GPUGEEK 平台优势尽显。其简洁直观的操作界面,使得即便对复杂技术不太精通的人员,也能快速上手进行模型部署操作。

如果你们也想体验下GPUGEEK里面的各种优秀的资源,你们可以点击链接进行注册操作

### 如何使用 vLLM 部署 DeepSeek-R1 70B 模型 对于具有较大规模的模型如 DeepSeek-R1 70B 的部署,考虑到其庞大的参数量以及所需的计算资源,建议采用分布式推理的方式来进行部署。基于此需求,在准备阶段需确认硬件环境满足条件,并按照特定配置来设置软件环境。 #### 准备工作 确保服务器配备足够的 GPU 资源支持大模型加载与运行。由于该模型体积庞大,推荐至少拥有多个具备高显存容量(例如 A100 或 H100 类型)GPU 卡的工作站或集群节点用于加速运算过程[^1]。 #### 下载并安装依赖项 通过 `pip` 安装必要的 Python 库以构建适合于处理大规模预训练语言模型的服务端应用: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118 pip install transformers sentencepiece ``` #### 获取模型权重文件 访问 Ollama 平台上的 Models 页面,定位到目标版本即 DeepSeek-R1 70B 。下载对应架构下的权重文件至本地存储路径 `/app/deepseek/DeepSeek-R1-70B` 中以便后续调用。 #### 补充模型元数据 针对已获取但缺少必要描述信息的情况,可利用 ModelScope 工具完成补充操作: ```bash modelscope download --model deepseek-ai/DeepSeek-R1-70B --exclude *.safetensors --local_dir /app/deepseek/DeepSeek-R1-70B ``` #### 启动量化推理服务 为了提高效率降低内存占用率,可以通过指定 FP8 量化方式启动服务实例;同时调整张量切分数量适应多卡协同作业场景: ```bash vllm serve /app/deepseek/DeepSeek-R1-70B \ --host 0.0.0.0 --port 6006 \ --quantization="fp8" \ --tensor-parallel-size 4 \ --max_model_len 32384 \ --served-model-name deepseek-ai/deepseek-r1:70b ``` 上述命令中设置了主机地址为任意 IP 可达(`0.0.0.0`)、监听端口设为 `6006` ,启用了FP8精度优化选项[--quantization="fp8"],指定了四个进程间通信单元参与任务分配[--tensor-parallel-size 4],限定了单次请求最大长度不超过 `32,384` tokens [--max_model_len 32384],最后给定了一个易于识别的服务名称[--served-model-name deepseek-ai/deepseek-r1:70b][^2]。
评论 95
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Undoom

感谢啦

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值