代码随想录:二叉树

 其实整个二叉树的问题都是前中后序的问题

递归法,迭代法,层序遍历,基本所有二叉树都可以用这三个方法解决

递归法往往一看就会一作就废;

层序遍历挺清晰的但是可能会超时

迭代法就是递归和层序的展开,要用栈或者队列

 

深度优先 

递归遍历

前序遍历: 中左右

class Solution {
public:
    void func(TreeNode* cur,vector<int>& vec){
        if(cur==nullptr) return;
        vec.push_back(cur->val);
        func(cur->left,vec);
        func(cur->right,vec);
    }
    vector<int> preorderTraversal(TreeNode* root) {
        vector<int> res;
        func(root,res);
        return res;
    }
};

 中序遍历(中左右)

void traversal(TreeNode* cur, vector<int>& vec) {
    if (cur == NULL) return;
    traversal(cur->left, vec);  // 左
    vec.push_back(cur->val);    // 中
    traversal(cur->right, vec); // 右
}

 后序遍历(左右中)

void traversal(TreeNode* cur, vector<int>& vec) {
    if (cur == NULL) return;
    traversal(cur->left, vec);  // 左
    traversal(cur->right, vec); // 右
    vec.push_back(cur->val);    // 中
}

迭代遍历

前序遍历:

class Solution {
public:
    vector<int> preorderTraversal(TreeNode* root) {
        stack<TreeNode*> st;
        vector<int> result;
        if (root == NULL) return result;
        st.push(root);
        while (!st.empty()) {
            TreeNode* node = st.top();         
            st.pop();
            result.push_back(node->val);
            if (node->right) st.push(node->right);       
            if (node->left) st.push(node->left);    
        }
        return result;
    }
};

 中序遍历:

class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> result;
        stack<TreeNode*> st;
        TreeNode* cur = root;
        while (cur != NULL || !st.empty()) {
            if (cur != NULL) { 
                st.push(cur); 
                cur = cur->left;         
            } else {
                cur = st.top();
                st.pop();
                result.push_back(cur->val); 
                cur = cur->right;              
            }
        }
        return result;
    }
};

后序遍历:

中右左————左中右

class Solution {
public:
    vector<int> postorderTraversal(TreeNode* root) {
        stack<TreeNode*> st;
        vector<int> result;
        if (root == NULL) return result;
        st.push(root);
        while (!st.empty()) {
            TreeNode* node = st.top();
            st.pop();
            result.push_back(node->val);
            if (node->left) st.push(node->left); 
            if (node->right) st.push(node->right); 
        }
        reverse(result.begin(), result.end()); 
        return result;
    }
};

 广度优先

层序遍历 

10道层序遍历的经典题 

代码01 (用queue一层一层来)

class Solution {
public:
    vector<vector<int>> levelOrder(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        vector<vector<int>> result;
        while (!que.empty()) {
            int size = que.size();
            vector<int> vec;
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                vec.push_back(node->val);
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
            result.push_back(vec);
        }
        return result;
    }
};

代码02(用depth递归) 

# 递归法
class Solution {
public:
    void order(TreeNode* cur, vector<vector<int>>& result, int depth)
    {
        if (cur == nullptr) return;
        if (result.size() == depth) result.push_back(vector<int>());
        result[depth].push_back(cur->val);
        order(cur->left, result, depth + 1);
        order(cur->right, result, depth + 1);
    }
    vector<vector<int>> levelOrder(TreeNode* root) {
        vector<vector<int>> result;
        int depth = 0;
        order(root, result, depth);
        return result;
    }
};

经典题目复现

( 前面是思路,后面是代码)

1.翻转二叉树. - 力扣(LeetCode)

2.对称二叉树. - 力扣(LeetCode)

该节点左边的子树和右边的子树完全相等,就要求左子树的左边=右子树的右边;左子树的右边=右子树的左边

3.二叉树的最大深度. - 力扣(LeetCode)

层序遍历or递归,注意用递归写的时候depth一定只能定义为0,否则底层的节点深度不为1

单层递归:maxDepth=1+max(左子树深度,右子树深度)

递归终止条件:if(!root) return 0;

层序遍历就是在while循环下,for循环外面加一个depth++,while结束后返回depth

 

4.二叉树的最小深度. - 力扣(LeetCode)

与求最大深度又所不同:minDepth!=1+min(左子树最小深度,右子树最小深度)

单层递归:

//情况一:左子树为空,右子树不为空:return 1+右子树最小深度

//情况二:左子树不为空,右子树为空:return 1+左子树最小深度

//情况三:左右子树都不为空,这时才是:return 1+min(左子树最小深度,子树最小深度)

递归终止条件:同求最大深度

层序遍历:在while循环里面,depth++,for循环里面,如果有节点的左右子节点为空就返回此时的深度

5.完全二叉树的节点个数. - 力扣(LeetCode)

思路一:递归:单层递归逻辑:1+左子树节点个数+右子树节点个数

             递归终止条件: if(!root) return 0;

思路二:层序遍历:for循环里面 添一句 result++;

6.左叶子之和. - 力扣(LeetCode)

思路一:递归:单层递归逻辑:左子树左叶子之和+右子树左叶子之和

               递归终止条件:root==null return0;

              有一点需要注意,因为判断某节点是不是左子叶,需要用父节点,如果某节点的左右子节点都是空,那么是不能确定这个点是不是左子叶的,所以仍然返回0,而在左节点那里做一个if判断

思路二:层序遍历:

if (node->left != NULL && node->left->left == NULL && node->left->right == NULL)

 result += node->left->val;    

7.平衡二叉树. - 力扣(LeetCode)

①这道题与前面的又所不同了,涉及到了回溯

②要理解高度与深度的不同

③一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1

8.二叉树的所有路径. - 力扣(LeetCode)

二叉搜索树

9.二叉搜索树中的搜索. - 力扣(LeetCode)

就是三种情况:根结点的值=/</>val,可以用递归或者迭代【易】

10.验证二叉搜索树. - 力扣(LeetCode)

利用到了二叉搜索树的特征,左<中<右,通过中序遍历将值存放到数组,最后只需要判断数组是不是单调递增的就行

方法二:不用数组,在中序遍历过程中直接判断就好了

这里有个细节,题目中最小值到了2^-31也就是int的最小值了,所以得用LONG_MIN作为max_val

NOTE:具体见这篇博客:http://t.csdnimg.cn/3DXBR

long long maxVal = LONG_MIN;

 

11.二叉搜索树的最小绝对差. - 力扣(LeetCode)

12.二叉搜索树中的众数. - 力扣(LeetCode)

用map:

有一些相关知识:http://t.csdnimg.cn/pjba3

13二叉搜索树中的插入操作. - 力扣(LeetCode)

TreeNode* insertIntoBST(TreeNode* root, int val) {
        if (!root) {
            TreeNode* node = new TreeNode(val);
            return node;}
        if (val > root->val)    root->right = insertIntoBST(root->right, val);
        if (val < root->val)    root->left = insertIntoBST(root->left, val);
        return root;
    }

 方二迭代:一判空,二找点,三插入

14删除二叉搜索树中的节点. - 力扣(LeetCode)

用递归判空有五种情况:

首先就是root为空,

root->val==key:二是删叶子节点,三是该点左为空有不为空,四是反过来,五是删的点左右都不为空

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值