LLMS&隐写术

   备注:只是一次关于大模型和论文的相关学习笔记,笔记内容只是帮助本人去更好地理解内容,不具有系统性,和严谨的逻辑。后续重要的学习部分部分会整理地形式发出,学习笔记就比较随意。想怎么来怎么来!(本科生的论文学习,内容仅代表个人意见,佬们轻喷 )

                     标题:提示隐写术:一种新的范式

摘要 :最近的研究表明,扩展预训练的语言模型可以显著提高下游任务的模型能力,从而产生了一个新的研究方向,即大型语言模型(large language models, LLMs)。法学硕士的一个显著应用是ChatGPT,它是一个强大的大型语言模型,能够基于上下文和过去的对话生成类似人类的文本。研究表明,法学硕士在推理推理方面具有令人印象深刻的技能,特别是在使用提示策略时。在本文中,我们探讨了将法学硕士应用于隐写术领域的可能性,隐写术被称为将秘密数据隐藏到秘密通信的无害掩护中的艺术。我们的目的不是将LLM结合到一个已经设计好的隐写系统中以提高性能,它遵循隐写术的传统框架。相反,我们期望,通过提示,一个LLM可以自己实现隐写,这被定义为提示隐写,可能是隐写的一种新范式。我们证明,通过推理,一个LLM可以将秘密数据嵌入到一个cover中,并从一个stego中提取秘密数据,而错误率是有限的。然而,这个错误率可以通过优化提示符来降低,这可能会为进一步的研究提供启发。

法学硕士——LLMS  (翻译的问题)

学习:

1.隐写术

     隐写术(Steganography)是一种信息隐藏技术,其核心目的是将信息嵌入到各种载体(如数字图像、音频、视频或文本)中,以实现隐蔽通信。隐写术与加密技术不同,它不仅隐藏信息的内容,还隐藏信息传输行为的存在性。这种技术利用人类感知系统对某些信息不敏感的特性,将秘密信息隐藏在数字载体的冗余信息中,使得信息在表面上看起来与普通载体无异,从而难以被攻击者察觉。

       隐写术的应用包括但不限于隐蔽传输、版权保护等。随着技术的发展,隐写术在军事、商业等领域变得越来越重要,同时也为恶意行为提供了便利,如间谍活动、恐怖袭击等。因此,隐写分析(Steganalysis)作为隐写术的对抗技术应运而生,其目的是通过对载体的统计特性进行分析,判断载体中是否隐藏有额外的信息,甚至估计信息嵌入量、获取隐藏信息内容。

     隐写术的技术实现方式多种多样,包括空域隐写、频域隐写等。空域隐写主要基于LSB(最低有效位)替换、调色板等技术,而频域隐写则包括DCT(离散余弦变换)、DFT(离散傅立叶变换)和DWT(离散小波变换)等。自适应隐写术是一种可以根据载体纹理特性调整信息嵌入过程的技术,以提高抗检测能力。

    隐写术的安全性在于载体信号的修改幅度通常受到限制,以避免引起注意。例如,在实际应用中,通常考虑±1和±2的隐写,即修改幅度为1或2的情况。此外,隐写术还涉及到湿纸编码,这是一种在载体的某些位置被限制修改的情况下嵌入信息的技术,而接收者无需知道哪些位置是受限的即可提取信息。

     总的来说,隐写术是一种复杂的信息隐藏技术,它在保护信息安全和隐私方面发挥着重要作用,同时也面临着隐写分析技术的挑战。

2.cover

       在密码学中,"cover"通常指的是“掩护信息”或“载体”,它是指用来隐藏真实信息的数据或信号。在隐写术(Steganography)的上下文中,"cover"是隐藏秘密信息的媒介,比如一张图片、一个音频文件或一段视频,这些载体表面上看起来是普通的,但它们实际上包含了隐蔽的信息。这种隐蔽的信息只有在知道特定的提取方法的情况下才能被检测到和解码,而对其他人来说则是不可见的。

Introduction:

      隐写术通过对载体的轻微修改,在不显著降低载体质量的情况下,将秘密信息隐藏在数字图像、文本等无害载体中。由此产生的携带秘密信息的载体通常称为stego,使解码器能够根据密钥重构秘密信息。隐写术最显著的优势在于,它甚至隐藏了当前通信的存在。

随着社交网络的快速发展,隐写术已经成为隐蔽通信的首选手段。可以预见,隐写术在现代信息安全中将变得越来越重要(研究的必要性)

深度学习与隐写术的结合:人们自然会想到将深度学习应用到隐写领域。沿着这个方向,有两种流行的基于深度学习的隐写框架,被研究界广泛追捧。一种是使用由编码器和解码器组成的端到端框架,前者将秘密信息嵌入到载体图像中,后者从隐写图像中提取秘密信息。另一种方法是利用神经网络学习代价函数,通过运行STCs实现最小失真嵌入。

自然语言隐写术在最近关于自然语言隐写术的研究中,有两种常见的数据嵌入策略。一种是修改给定的载体文本生成隐写文本[7],另一种是直接生成不含载体文本[4]的隐写文本。这两种策略都需要一个预训练的语言模型,其功能是,在文本生成或标记修改期间,为每个要嵌入的标记位置生成一个候选标记列表(每个标记都与一个预测概率相关联),以便我们可以根据要嵌入的秘密信息选择最合适的标记作为当前的输出。

本文研究:

    我们更感兴趣的是“自动”隐写术,即通过推理,LLM本身可以将秘密信息嵌入到一个cover对象中,并从一个stego对象中提取秘密信息,这为隐写术提供了一种新的范式。沿着这个方向,本文介绍了提示隐写术,其中利用预训练的LLM来实现给定提示的隐写。

结论:我们表明,通过推理,LLM可以将秘密数据嵌入到掩体中,并从隐写中提取秘密数据,但具有错误率。然而,这个错误率可以通过提示优化显著降低,这可能会为进一步的研究提供启发。

    为确保隐蔽性(即不引起通道监测员的怀疑,或者说,隐藏秘密信息的存在),x和x ~ x ~(即||xx ~ || ~)之间的失真必须足够小。最简单但最有效的隐写算法是LSB替换,其中“LSB”是“最低有效位”的缩写。LSB替换利用整型整数的奇偶性来实现信息嵌入。例如,设x为非负整数,m∈{0,1}为待隐藏的秘密位,则LSB替换的数据嵌入操作可表示为x ~ = x(x mod 2) + m。数据提取操作可表示为m = x ~mod 2。可以推断,LSB替换实质上是将覆盖元的LSB替换为数据嵌入的秘密位。另一种经典算法是量化指数调制

(quantizing Index Modulation, QIM)[10]。QIM的一个简单实现可以描述如下。令x表示一个实数,m{0,1}为秘密位,隐写元素x ~(由x ~ =[x/∆⌋(x/∆⌋mod 2) + m]·。这样,数据提取操作就可以表示为m =~ x/∆⌋mod 2。显然,LSB置换是QIM的一个特例(∆= 1)。我们会回顾更多的隐写算法,因为这不是本文的主要兴趣所在。

  

其中M是可选的。在隐写中,数据发送方和数据接收方可能会提前共享一些边信息,可以认为是秘密密钥k的一部分。

Token

在密码学中,"token"通常指的是一个由字母数字字符组成的字符串,它用于验证用户身份或授权用户进行特定操作。

语言模型

语言模型是一种概率模型,它使用机器学习对token序列进行概率分布。它从文本数据中学习,并具有各种应用,如序列预测、文本分类和语言翻译。

Transform

Transformer[12]作为一种革命性的架构,近年来在各种自然语言处理任务中取得了巨大的成功。它也极大地推动了语言模型的发        展。BERT[13]、GPT-2[14]、GPT-3[15]等各种模型都以Transformer或其变体为核心。Transformer由一个编码器和一个解码器组成。变压器在于并行计算,与rnn相比,大大减少了计算时间。Transformer具有非常强大的提取文本特征和预测token的能力,使得编码器和解码器

甚至可以独立用作语言模型。目前,最先进的语言模型是基于Trans-former的。这些模型是预先用大量文本进行训练的,因此它们也被称为预训练语言模型(pre-trainedlanguage models, plm)。这些plm利用了迁移学习的思想,即它们在预训练期间学习了自然语言的基本知识,并且在使用少量文本进行微调后可以在下游任务中表现得非常好。

LLMS

   另一方面,法学硕士的突发能力被定义为那些在较小的模型中不存在但在较大的模型中存在的能力[23]。典型的涌现能力包括上下文学习(ICL),指令遵循和逐步推理[20]。ICL使法学硕士能够在没有训练的情况下,从上下文中的几个例子中推断如何执行新的下游任务。指令遵循意味着法学硕士可以在不使用显式示例的情况下遵循新任务的指令,从而获得更好的泛化能力。此外,通过逐步推理,法学硕士可以解决许多复杂的任务,如数学、常识推理和符号操作。所有这些都被广泛证明是法学硕士的新兴能力。

提示工程

     提示工程的目的通常是为法学硕士开发和优化提示,以便法学硕士能够返回给定要解决的问题的正确或最优解。在各种提示策略中,zero-shot是最简单的一种。它之所以有效,是因为法学硕士可以在不使用显式示例的情况下遵循新任务的说明。

   eg:提示“将文本分为中性、否定或肯定。文字:很高兴见到你。情感:",一个LLM可能输出“积极的”。零样本可以被视为提示的基线,因为它不依赖于任何指定的提示。因此,zero-shot的一个显著优势是,无论其推理性能如何,它都不受任何特定任务的约束。虽然zero-shot是我们希望法学硕士获得的最理想的能力之一,但它在实践中可能并不理想,至少目前是这样。为了解决这个问题,可以提供一些演示或例子,这被认为是少样本提示。例如,给定“` A ` = 65, ` C ` =67, ` G ` =”,LLM可能返回“71”。

提示隐写术

   在本文中,我们使用前面提到的微软的人工智能必应聊天进行实验。这样的选择有三个原因。首先,必应聊天基于最先进的LLM,即GPT-4[34],适合于探索隐写术。其次,必应聊天对普通用户开放,无需计算资源和专业知识就可以轻松进行模拟。第三,作者目前没有支持LLM研究的本地计算资源。需要指出的是,微软可能会升级必应聊天,这将导致读者在决定重现实验时,实验结果出现一些偏差。不过,我们相信这并不会影响我们的结论和分析。

Zero-shot Steganography

     从这个例子可以推断,法学硕士应该能够在零射击场景下进行隐写,这是因为法学硕士具有应急能力,能够很好地学习隐写领域的知识。我们还评估了QIM隐写的提示情况,然而,由于QIM隐写有各种实现,因此不能很好地执行,

Few-shot Steganography

      另一类称为少样本隐写术(few-shot steganography),它为模型提供了一些直观的隐写演示或示例。如果演示或示例的数量等于1,也称为one-shot隐写术。我们通过实验发现,零样本隐写会产生数据嵌入和数据提取的错误。图5展示了一个例子,其中三个掩体元素被错误地修改,从而肯定会导致错误的解码。不过,如图6所示,这些错误可以通过“优化”提示符来纠正。很自然地会提出这样一个问题:少样本的演示。或示例能增强模型的隐写能力吗?这就需要我们提供定量分析

 

软件准备

复现1

步长为三

结论一:

     根据我们的实验,两个几乎相同的提示:将导致QIM隐写术的两种不同实现。事实上,即使是两个完全相同的提示也可能导致不同的结

果,例如上文提到的第二个提示。这表明,为了正确地从隐密序列中提取秘密比特,输入不应该引入歧义。

提示词  Please design a new steganographic algorithm that seg-ments a cover sequence into multiple subsequences and uses each subsequence to carry only one bit. The length of each subse- quence should be larger than 1.请设计一种新的隐写算法,将一个cover序列分割成多个子序列,并使用每个子序列只携带一个比特。每个子序列的长度应该大于1。

     虽然隐写算法很简单,即LSB隐写的一种变体,但该模型对我们的反应是积极的。具体来说,该模型设计的算法的工作原理是利用每个子序列的和的奇偶性来携带一个比特的秘密消息。如果奇偶校验与要编码的秘密位不匹配,则翻转子序列最后一个元素的LSB。解码时,它从每个子序列的奇偶校验中检索该比特位,并将其转换回二进制流。该模型对算法给出了如下的全面评估:“请注意,这是一个非常简单的算法,可能不适合实际使用。它假设在封面序列中翻转一个元素不会被注意到,这可能不是真的,这取决于你使用的是哪种数据。此外,它不包括任何错误检查或更正,因此如果在传输过程中有一个比特被翻转,就可能导致解码出错。如果你打算在现实世界的应用中使用它,你可能想要考虑添加一些形式的错误检查或更正。”虽然这总结是有意义的,我们不知道它是模型学习的东西,还是模型未经思考的输出。需要重新标记的是,尽管我们在前面的提示中使用了术语“LSB隐写术”,但人们可以用适用于任意算法的描述性句子代替“LSB隐写术”。

 

 

  复现二:

 

 

 

 

 

…….(省略)

 

    上述结论并不总是适用于提示隐写术。可以看出,虽然少样本场景在数据提取方面优于零样本场景,但在数据嵌入方面,少样本场景导致了更差的性能。我们提供了我们的合理解释如下。与LSB嵌入相比,LSB提取更容易,因此在两种情况下,提取性能都优于嵌入性能,图7和图8验证了这一点。LSB提取接受一个序列作为输入,而LSB嵌入需要处理两个序列。在进行LSB提取时,采用少量样本可以增强模型的对齐能力,使模型能够更好地有序处理隐进序列中的每个元素,然后输出相应的位。但是,在执行LSB嵌入时,提示符中的几个示例并没有提供任何中间步骤。直接给出的答案可能会导致模型容易忘记中间步骤,甚至误解LSB嵌入,使其容易出错。因此,如何进一步提高少样本隐写术的提示性值得探索。

 

 

提示优化 

         由于测试提示数量较少,图7和图8可能无法准确表征模型在隐写方面的性能。然而,我们可以得出结论,模型的隐写性能实际上并不令人满意,因为当覆盖(或隐写)元素的数量达到80时,PCEE和PCES都相对很低。虽然可以应用er- errorcorrecting codes (ECC)来提高可靠性,但其贡献可能有限,因为应用ECC会减少纯有效载荷,而且由于模型的错误嵌入/提取概率不可预测,我们不知道如何在实践中设置ECC参数。因此,找到好的策略来优化馈送到模型中的提示,使模型能够做出更准确的推理,将是相当可取的。这促使作者探索高效的优化策

略。

   分割

         Position-aware融合

   分而治之,以及自我一致性

    组合和其他策略(次)

 

 

 

结论与讨论

   在本文中,我们介绍了提示隐写术,它将提示输入到LLM中,使LLM可以将秘密数据嵌入到一个cover中,并通过自身的推理从一个隐写中提取秘密数据。我们的实验结果表明,随着要嵌入(或提取)的秘密比特总数的增加,错误不可避免地发生。为了减少错误,我们针对输入提示提出了三种优化策略。实验验证了这些策略的有效性和优越性。虽然本文评估的隐写操作简单,即LSB嵌入和提取,但可以肯定LLM能够推理提示隐写,这与以往完全遵循人类设计理念。与传统的隐写算法完全不同。可以预见的是,未来可能不需要人类开发任何隐写算法。相反,通过向LLM提供指令,LLM本身可以设计出符合指令中指定要求的隐写算法,并成功执行数据嵌入和数据提取。虽然这需要研究人员的持续努力,但我们的工作在一定程度上证明了它可以成为现实。此外,我们之前的工作[35]表明,语言模型可以增强隐写分析能力,这意味着提示隐写分析也应该是有效的。我们希望我们的努力能够启发更多先进的作品。

总结:

   隐写术与大模型的结合,与传统的给模型算法生成隐写术不同,本文最大的创新点是通过提示优化,向LLM提供指令,由LLM提供隐写算法。即一种完全不用人类去开发任何隐写术算法。

  核心点:1.思想

          2.提示优化(分割,Position-aware融合 分而治之,以及自我一致性   组合和其他策略(次)

 

优缺点:

    优点:

    最大的闪光点是提出一种通过提示词大模型生成隐写算法的思想。同理是否可以通过大模型去自动生成水印,去自己设计一个算法解决问题……

    缺点:

    1.本文数据不够,说服力不足——只使用了一个大模型去提问,针对的问题数量也不足,很难具有说服力。

        2. 前面大篇篇幅去介绍了与本文不是很相关的隐写术相关内容,而本文关键是提示词优化部分(很少)-即完成度很低。所以核心还是 提出的这种核心思想   

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值