【数据结构与算法 | 二叉树篇】AVL树

1. 前言

AVL树是一种自平衡的二叉搜索树。为什么会出现AVL树。众所周知,虽然普通的二叉搜索树的平均时间复杂度为O(logn),但最差的情况的时间复杂度为O(n)。为了避免最差的这种情况,出现了AVL树。

我们规定:如果树有个节点它的左子树的高度-右子树的高度大于1或者它的右子树的高度-左子树的高度小于-1,我们就说该二叉搜索树是不平衡的,需要调整。

2. 四种失衡情况以及解决方案

简单聊聊AVL树相关的四种失衡情况:

  • (LL)某节点的左子树高度-右子树高度大于1,且失衡节点的左孩子也高于右孩子或等高;
  • (LR)某节点的左子树高度-右子树高度大于1,且其左孩子的左子树高度-右子树高度小于-1;
  • (RL)某节点的右子树高度-左子树高度大于1,且其右孩子的左子树高度-右子树高度大于1;
  • (RR)某节点的右子树高度-左子树高度大于1,且失衡节点的右孩子也高于左孩子或等高;

AVL树需要进行调整:

  • (LL)该节点需要右旋。
  • (LR)该节点的左孩子需要左旋,且该节点需要右旋。
  • (RL)该节点的右孩子需要右旋,且该节点需要左旋。
  • (RR)该节点需要左旋。

LL旋转情况如图:

LR旋转情况如图:

RL旋转情况如图:

RR旋转情况如图:

解决方法:

// 右旋(LL)
    private AVLNode RightRotation(AVLNode red) {
        AVLNode yellow = red.left;
        AVLNode blue = yellow.right;
        yellow.right = red;
        red.left = blue;
        // 更新red节点的高度
        updateHeight(red);
        // 再更新yellow节点的高度(因为red是yellow的孩子节点,
        // 只有计算对了red节点的高度,才会正确得出yellow节点的高度)
        updateHeight(yellow);
        return yellow;
    }
    // 左旋(RR)
    private AVLNode LeftRotation(AVLNode red){
        AVLNode yellow = red.right;
        AVLNode blue = yellow.left;
        yellow.left = red;
        red.left = blue;
        updateHeight(red);
        updateHeight(yellow);
        return yellow;
    }
    // (LR)
    private AVLNode LeftRightRotation(AVLNode node) {
        // 失衡节点的左孩子需要左旋
        node.left = LeftRotation(node.left);
        // 失衡节点需要右旋
        return RightRotation(node);
    }
    // (RL)
    private AVLNode RightLeftRotation(AVLNode node) {
        // 失衡节点的右孩子需要右旋
        node.right = RightRotation(node.right);
        // 失衡节点需要左旋
        return LeftRotation(node);
    }

3. AVL树代码

public class AVLTree {
    static private class AVLNode{
        int key;
        Object value;
        AVLNode left;
        AVLNode right;
        // 一个节点的默认高度为1
        int height = 1;

        public AVLNode(int key, Object value) {
            this.key = key;
            this.value = value;
        }

        public AVLNode(int key, Object value, AVLNode left, AVLNode right) {
            this.key = key;
            this.value = value;
            this.left = left;
            this.right = right;
        }
    }
    private int doHeight(AVLNode node){
        return node == null ? 0 : node.height;
    }
    private void updateHeight(AVLNode node) {
        if (node == null) {
            return;
        }
        node.height = Integer.max(doHeight(node.left), doHeight(node.right)) + 1;
    }
    // 平衡因子(balance factor),处于-1,0,1时是满足平衡的。
    private int bf(AVLNode node){
        return doHeight(node.left) - doHeight(node.right);
    }
    // 右旋(LL)
    private AVLNode RightRotation(AVLNode red) {
        AVLNode yellow = red.left;
        AVLNode blue = yellow.right;
        yellow.right = red;
        red.left = blue;
        // 更新red节点的高度
        updateHeight(red);
        // 再更新yellow节点的高度(因为red是yellow的孩子节点,
        // 只有计算对了red节点的高度,才会正确得出yellow节点的高度)
        updateHeight(yellow);
        return yellow;
    }
    // 左旋(RR)
    private AVLNode LeftRotation(AVLNode red){
        AVLNode yellow = red.right;
        AVLNode blue = yellow.left;
        yellow.left = red;
        red.left = blue;
        updateHeight(red);
        updateHeight(yellow);
        return yellow;
    }
    // (LR)
    private AVLNode LeftRightRotation(AVLNode node) {
        // 失衡节点的左孩子需要左旋
        node.left = LeftRotation(node.left);
        // 失衡节点需要右旋
        return RightRotation(node);
    }
    // (RL)
    private AVLNode RightLeftRotation(AVLNode node) {
        // 失衡节点的右孩子需要右旋
        node.right = RightRotation(node.right);
        // 失衡节点需要左旋
        return LeftRotation(node);
    }
    //检查节点是否失衡,重新平衡代码
    private AVLNode balance(AVLNode node) {
        if (node == null) return null;
        int bf = bf(node);
        if (bf > 1 && bf(node.left) >= 0){
            // LL
            return RightRotation(node);
        } else if (bf > 1 && bf(node.left) < 0) {
            return LeftRightRotation(node);
        } else if (bf < -1 && bf(node.right) > 0) {
            return RightLeftRotation(node);
        } else if (bf < -1 && bf(node.right) <= 0) {
            return LeftRotation(node);
        }
        // 进行到这,说明该节点不需要做平衡调整
        return node;
    }
    // 向AVL树添加节点,并保持平衡特性
    AVLNode root;
    public void put(int key, Object value) {
        root = doPut(root, key, value);
    }
    private AVLNode doPut(AVLNode node, int key, Object value) {
        // 如果root为null,new一个节点返回
        if (node == null) {
            return new AVLNode(key, value);
        }
        // 如果已经查找到了,更新node的值
        if (node.key == key) {
            node.value = value;
            return node;
        }

        // 如果还没找到,继续查找
        if (node.key > key) {
            node.right = doPut(node.right, key, value);
        } else{
            node.left = doPut(node.left, key, value);
        }
        updateHeight(node);
        return balance(node);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值