1. 力扣1890:2020年最后一次登录
1.1 题目:
表: Logins
+----------------+----------+ | 列名 | 类型 | +----------------+----------+ | user_id | int | | time_stamp | datetime | +----------------+----------+ (user_id, time_stamp) 是这个表的主键(具有唯一值的列的组合)。 每一行包含的信息是user_id 这个用户的登录时间。
编写解决方案以获取在 2020
年登录过的所有用户的本年度 最后一次 登录时间。结果集 不 包含 2020
年没有登录过的用户。
返回的结果集可以按 任意顺序 排列。
返回结果格式如下例。
示例 1:
输入: Logins 表: +---------+---------------------+ | user_id | time_stamp | +---------+---------------------+ | 6 | 2020-06-30 15:06:07 | | 6 | 2021-04-21 14:06:06 | | 6 | 2019-03-07 00:18:15 | | 8 | 2020-02-01 05:10:53 | | 8 | 2020-12-30 00:46:50 | | 2 | 2020-01-16 02:49:50 | | 2 | 2019-08-25 07:59:08 | | 14 | 2019-07-14 09:00:00 | | 14 | 2021-01-06 11:59:59 | +---------+---------------------+ 输出: +---------+---------------------+ | user_id | last_stamp | +---------+---------------------+ | 6 | 2020-06-30 15:06:07 | | 8 | 2020-12-30 00:46:50 | | 2 | 2020-01-16 02:49:50 | +---------+---------------------+ 解释: 6号用户登录了3次,但是在2020年仅有一次,所以结果集应包含此次登录。 8号用户在2020年登录了2次,一次在2月,一次在12月,所以,结果集应该包含12月的这次登录。 2号用户登录了2次,但是在2020年仅有一次,所以结果集应包含此次登录。 14号用户在2020年没有登录,所以结果集不应包含。
1.2 思路:
看注释。
1.3 题解:
-- 先将不是在2020年的记录过滤掉
with tep as (
select *
from Logins
where substring(time_stamp, 1, 4) = '2020'
)
-- 然后再分组查询最晚的时间
select user_id, max(time_stamp) last_stamp
from tep
group by user_id
2. 力扣1867:最大数量高于平均水平的订单
2.1 题目:
OrdersDetails
表
+-------------+------+ | Column Name | Type | +-------------+------+ | order_id | int | | product_id | int | | quantity | int | +-------------+------+ (order_id, product_id) 是此表的主键。 单个订单表示为多行,订单中的每个产品对应一行。 此表的每一行都包含订单id中产品id的订购数量。
您正在运行一个电子商务网站,该网站正在寻找不平衡的订单。不平衡订单的订单最大数量严格大于每个订单(包括订单本身)的平均数量。
订单的平均数量计算为(订单中所有产品的总数量)/(订单中不同产品的数量)。订单的最大数量是订单中任何单个产品的最高数量。
编写SQL查询以查找所有不平衡订单的订单id。
按任意顺序返回结果表。
查询结果格式如下例所示。
示例:
输入: OrdersDetails 表: +----------+------------+----------+ | order_id | product_id | quantity | +----------+------------+----------+ | 1 | 1 | 12 | | 1 | 2 | 10 | | 1 | 3 | 15 | | 2 | 1 | 8 | | 2 | 4 | 4 | | 2 | 5 | 6 | | 3 | 3 | 5 | | 3 | 4 | 18 | | 4 | 5 | 2 | | 4 | 6 | 8 | | 5 | 7 | 9 | | 5 | 8 | 9 | | 3 | 9 | 20 | | 2 | 9 | 4 | +----------+------------+----------+ 输出: +----------+ | order_id | +----------+ | 1 | | 3 | +----------+ 解释: 每份订单的平均数量为: - order_id=1: (12+10+15)/3 = 12.3333333 - order_id=2: (8+4+6+4)/4 = 5.5 - order_id=3: (5+18+20)/3 = 14.333333 - order_id=4: (2+8)/2 = 5 - order_id=5: (9+9)/2 = 9 每个订单的最大数量为: - order_id=1: max(12, 10, 15) = 15 - order_id=2: max(8, 4, 6, 4) = 8 - order_id=3: max(5, 18, 20) = 20 - order_id=4: max(2, 8) = 8 - order_id=5: max(9, 9) = 9 订单1和订单3是不平衡的,因为它们的最大数量超过了它们订单的平均数量。
2.2 思路:
看注释。
2.3 题解:
-- 找到每个订单的平均数量
with tep as (
select avg(quantity)
from OrdersDetails
group by order_id
)
select order_id
from OrdersDetails
group by order_id
-- 如果其最大数量大于(严格大于)每个订单的平均数量,就是不平衡的。
having max(quantity) > all(
select *
from tep
)
3. 力扣1934:确认率
3.1 题目:
表: Signups
+----------------+----------+ | Column Name | Type | +----------------+----------+ | user_id | int | | time_stamp | datetime | +----------------+----------+ User_id是该表的主键。 每一行都包含ID为user_id的用户的注册时间信息。
表: Confirmations
+----------------+----------+ | Column Name | Type | +----------------+----------+ | user_id | int | | time_stamp | datetime | | action | ENUM | +----------------+----------+ (user_id, time_stamp)是该表的主键。 user_id是一个引用到注册表的外键。 action是类型为('confirmed', 'timeout')的ENUM 该表的每一行都表示ID为user_id的用户在time_stamp请求了一条确认消息,该确认消息要么被确认('confirmed'),要么被过期('timeout')。
用户的 确认率 是 'confirmed'
消息的数量除以请求的确认消息的总数。没有请求任何确认消息的用户的确认率为 0
。确认率四舍五入到 小数点后两位 。
编写一个SQL查询来查找每个用户的 确认率 。
以 任意顺序 返回结果表。
查询结果格式如下所示。
示例1:
输入: Signups 表: +---------+---------------------+ | user_id | time_stamp | +---------+---------------------+ | 3 | 2020-03-21 10:16:13 | | 7 | 2020-01-04 13:57:59 | | 2 | 2020-07-29 23:09:44 | | 6 | 2020-12-09 10:39:37 | +---------+---------------------+ Confirmations 表: +---------+---------------------+-----------+ | user_id | time_stamp | action | +---------+---------------------+-----------+ | 3 | 2021-01-06 03:30:46 | timeout | | 3 | 2021-07-14 14:00:00 | timeout | | 7 | 2021-06-12 11:57:29 | confirmed | | 7 | 2021-06-13 12:58:28 | confirmed | | 7 | 2021-06-14 13:59:27 | confirmed | | 2 | 2021-01-22 00:00:00 | confirmed | | 2 | 2021-02-28 23:59:59 | timeout | +---------+---------------------+-----------+ 输出: +---------+-------------------+ | user_id | confirmation_rate | +---------+-------------------+ | 6 | 0.00 | | 3 | 0.00 | | 7 | 1.00 | | 2 | 0.50 | +---------+-------------------+ 解释: 用户 6 没有请求任何确认消息。确认率为 0。 用户 3 进行了 2 次请求,都超时了。确认率为 0。 用户 7 提出了 3 个请求,所有请求都得到了确认。确认率为 1。 用户 2 做了 2 个请求,其中一个被确认,另一个超时。确认率为 1 / 2 = 0.5。
3.2 思路:
建立临时表左连接,确保用户都在。
然后分组再计算比例。
3.3 题解:
-- 建立临时表,减少代码量,将两张表左连接
with tep as (
select s.user_id,action
from Signups s
left join Confirmations c
on s.user_id = c.user_id
)
-- round函数控制小数点四舍五入。
-- 然后两个子查询计算确认率即可。
select user_id, round((select count(*) from tep t3 where t1.user_id = t3.user_id and action = 'confirmed')
/
(select count(*) from tep t2 where t1.user_id = t2.user_id )
, 2) confirmation_rate
from tep t1
group by user_id
4. 力扣1965:丢失信息的演员
4.1 题目:
表: Employees
+-------------+---------+ | Column Name | Type | +-------------+---------+ | employee_id | int | | name | varchar | +-------------+---------+ employee_id 是该表中具有唯一值的列。 每一行表示雇员的 id 和他的姓名。
表: Salaries
+-------------+---------+ | Column Name | Type | +-------------+---------+ | employee_id | int | | salary | int | +-------------+---------+ employee_id 是该表中具有唯一值的列。 每一行表示雇员的 id 和他的薪水。
编写解决方案,找到所有 丢失信息 的雇员 id。当满足下面一个条件时,就被认为是雇员的信息丢失:
- 雇员的 姓名 丢失了,或者
- 雇员的 薪水信息 丢失了
返回这些雇员的 id employee_id
, 从小到大排序 。
查询结果格式如下面的例子所示。
示例 1:
输入: Employees table: +-------------+----------+ | employee_id | name | +-------------+----------+ | 2 | Crew | | 4 | Haven | | 5 | Kristian | +-------------+----------+ Salaries table: +-------------+--------+ | employee_id | salary | +-------------+--------+ | 5 | 76071 | | 1 | 22517 | | 4 | 63539 | +-------------+--------+ 输出: +-------------+ | employee_id | +-------------+ | 1 | | 2 | +-------------+ 解释: 雇员 1,2,4,5 都在这个公司工作。 1 号雇员的姓名丢失了。 2 号雇员的薪水信息丢失了。
4.2 思路:
两张表union去重,然后查询排序。
4.3 题解:
with tep as (
select employee_id
from Employees
where employee_id not in (
select employee_id
from Salaries
)
union
select employee_id
from Salaries
where employee_id not in (
select employee_id
from Employees
)
)
select employee_id
from tep
order by employee_id