【力扣 | SQL题 | 每日四题】力扣1890, 1867, 1934, 1965

1. 力扣1890:2020年最后一次登录

1.1 题目:

表: Logins

+----------------+----------+
| 列名           | 类型      |
+----------------+----------+
| user_id        | int      |
| time_stamp     | datetime |
+----------------+----------+
(user_id, time_stamp) 是这个表的主键(具有唯一值的列的组合)。
每一行包含的信息是user_id 这个用户的登录时间。

编写解决方案以获取在 2020 年登录过的所有用户的本年度 最后一次 登录时间。结果集  包含 2020 年没有登录过的用户。

返回的结果集可以按 任意顺序 排列。

返回结果格式如下例。

示例 1:

输入:
Logins 表:
+---------+---------------------+
| user_id | time_stamp          |
+---------+---------------------+
| 6       | 2020-06-30 15:06:07 |
| 6       | 2021-04-21 14:06:06 |
| 6       | 2019-03-07 00:18:15 |
| 8       | 2020-02-01 05:10:53 |
| 8       | 2020-12-30 00:46:50 |
| 2       | 2020-01-16 02:49:50 |
| 2       | 2019-08-25 07:59:08 |
| 14      | 2019-07-14 09:00:00 |
| 14      | 2021-01-06 11:59:59 |
+---------+---------------------+
输出:
+---------+---------------------+
| user_id | last_stamp          |
+---------+---------------------+
| 6       | 2020-06-30 15:06:07 |
| 8       | 2020-12-30 00:46:50 |
| 2       | 2020-01-16 02:49:50 |
+---------+---------------------+
解释:
6号用户登录了3次,但是在2020年仅有一次,所以结果集应包含此次登录。
8号用户在2020年登录了2次,一次在2月,一次在12月,所以,结果集应该包含12月的这次登录。
2号用户登录了2次,但是在2020年仅有一次,所以结果集应包含此次登录。
14号用户在2020年没有登录,所以结果集不应包含。

1.2 思路:

看注释。

1.3 题解:

-- 先将不是在2020年的记录过滤掉
with tep as (
    select *
    from Logins
    where substring(time_stamp, 1, 4) = '2020'
)
-- 然后再分组查询最晚的时间
select user_id, max(time_stamp) last_stamp          
from tep
group by user_id

2. 力扣1867:最大数量高于平均水平的订单

2.1 题目:

OrdersDetails 表

+-------------+------+
| Column Name | Type |
+-------------+------+
| order_id    | int  |
| product_id  | int  |
| quantity    | int  |
+-------------+------+
(order_id, product_id) 是此表的主键。
单个订单表示为多行,订单中的每个产品对应一行。
此表的每一行都包含订单id中产品id的订购数量。

您正在运行一个电子商务网站,该网站正在寻找不平衡的订单。不平衡订单的订单最大数量严格大于每个订单(包括订单本身)的平均数量。

订单的平均数量计算为(订单中所有产品的总数量)/(订单中不同产品的数量)。订单的最大数量是订单中任何单个产品的最高数量。

编写SQL查询以查找所有不平衡订单的订单id。

按任意顺序返回结果表。

查询结果格式如下例所示。

示例:

输入: 
OrdersDetails 表:
+----------+------------+----------+
| order_id | product_id | quantity |
+----------+------------+----------+
| 1        | 1          | 12       |
| 1        | 2          | 10       |
| 1        | 3          | 15       |
| 2        | 1          | 8        |
| 2        | 4          | 4        |
| 2        | 5          | 6        |
| 3        | 3          | 5        |
| 3        | 4          | 18       |
| 4        | 5          | 2        |
| 4        | 6          | 8        |
| 5        | 7          | 9        |
| 5        | 8          | 9        |
| 3        | 9          | 20       |
| 2        | 9          | 4        |
+----------+------------+----------+
输出: 
+----------+
| order_id |
+----------+
| 1        |
| 3        |
+----------+
解释: 
每份订单的平均数量为:
- order_id=1: (12+10+15)/3 = 12.3333333
- order_id=2: (8+4+6+4)/4 = 5.5
- order_id=3: (5+18+20)/3 = 14.333333
- order_id=4: (2+8)/2 = 5
- order_id=5: (9+9)/2 = 9

每个订单的最大数量为:
- order_id=1: max(12, 10, 15) = 15
- order_id=2: max(8, 4, 6, 4) = 8
- order_id=3: max(5, 18, 20) = 20
- order_id=4: max(2, 8) = 8
- order_id=5: max(9, 9) = 9

订单1和订单3是不平衡的,因为它们的最大数量超过了它们订单的平均数量。

2.2 思路:

看注释。

2.3 题解:

-- 找到每个订单的平均数量
with tep as (
    select avg(quantity)
    from OrdersDetails
    group by order_id
)

select order_id
from OrdersDetails
group by order_id
-- 如果其最大数量大于(严格大于)每个订单的平均数量,就是不平衡的。
having max(quantity) > all(
    select *
    from tep
)

3. 力扣1934:确认率

3.1 题目:

表: Signups

+----------------+----------+
| Column Name    | Type     |
+----------------+----------+
| user_id        | int      |
| time_stamp     | datetime |
+----------------+----------+
User_id是该表的主键。
每一行都包含ID为user_id的用户的注册时间信息。

表: Confirmations

+----------------+----------+
| Column Name    | Type     |
+----------------+----------+
| user_id        | int      |
| time_stamp     | datetime |
| action         | ENUM     |
+----------------+----------+
(user_id, time_stamp)是该表的主键。
user_id是一个引用到注册表的外键。
action是类型为('confirmed', 'timeout')的ENUM
该表的每一行都表示ID为user_id的用户在time_stamp请求了一条确认消息,该确认消息要么被确认('confirmed'),要么被过期('timeout')。

用户的 确认率 是 'confirmed' 消息的数量除以请求的确认消息的总数。没有请求任何确认消息的用户的确认率为 0 。确认率四舍五入到 小数点后两位 。

编写一个SQL查询来查找每个用户的 确认率 。

以 任意顺序 返回结果表。

查询结果格式如下所示。

示例1:

输入:
Signups 表:
+---------+---------------------+
| user_id | time_stamp          |
+---------+---------------------+
| 3       | 2020-03-21 10:16:13 |
| 7       | 2020-01-04 13:57:59 |
| 2       | 2020-07-29 23:09:44 |
| 6       | 2020-12-09 10:39:37 |
+---------+---------------------+
Confirmations 表:
+---------+---------------------+-----------+
| user_id | time_stamp          | action    |
+---------+---------------------+-----------+
| 3       | 2021-01-06 03:30:46 | timeout   |
| 3       | 2021-07-14 14:00:00 | timeout   |
| 7       | 2021-06-12 11:57:29 | confirmed |
| 7       | 2021-06-13 12:58:28 | confirmed |
| 7       | 2021-06-14 13:59:27 | confirmed |
| 2       | 2021-01-22 00:00:00 | confirmed |
| 2       | 2021-02-28 23:59:59 | timeout   |
+---------+---------------------+-----------+
输出: 
+---------+-------------------+
| user_id | confirmation_rate |
+---------+-------------------+
| 6       | 0.00              |
| 3       | 0.00              |
| 7       | 1.00              |
| 2       | 0.50              |
+---------+-------------------+
解释:
用户 6 没有请求任何确认消息。确认率为 0。
用户 3 进行了 2 次请求,都超时了。确认率为 0。
用户 7 提出了 3 个请求,所有请求都得到了确认。确认率为 1。
用户 2 做了 2 个请求,其中一个被确认,另一个超时。确认率为 1 / 2 = 0.5。

3.2 思路:

建立临时表左连接,确保用户都在。

然后分组再计算比例。

3.3 题解:

-- 建立临时表,减少代码量,将两张表左连接
with tep as (
    select s.user_id,action
    from Signups s
    left join Confirmations c
    on s.user_id = c.user_id
)
-- round函数控制小数点四舍五入。
-- 然后两个子查询计算确认率即可。
select user_id, round((select count(*) from tep t3 where t1.user_id = t3.user_id and action = 'confirmed')
/ 
(select count(*) from tep t2 where t1.user_id = t2.user_id )
, 2) confirmation_rate
from tep t1
group by user_id

4. 力扣1965:丢失信息的演员

4.1 题目:

表: Employees

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| employee_id | int     |
| name        | varchar |
+-------------+---------+
employee_id 是该表中具有唯一值的列。
每一行表示雇员的 id 和他的姓名。

表: Salaries

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| employee_id | int     |
| salary      | int     |
+-------------+---------+
employee_id 是该表中具有唯一值的列。
每一行表示雇员的 id 和他的薪水。

编写解决方案,找到所有 丢失信息 的雇员 id。当满足下面一个条件时,就被认为是雇员的信息丢失:

  • 雇员的 姓名 丢失了,或者
  • 雇员的 薪水信息 丢失了

返回这些雇员的 id  employee_id , 从小到大排序 

查询结果格式如下面的例子所示。

示例 1:

输入:
Employees table:
+-------------+----------+
| employee_id | name     |
+-------------+----------+
| 2           | Crew     |
| 4           | Haven    |
| 5           | Kristian |
+-------------+----------+
Salaries table:
+-------------+--------+
| employee_id | salary |
+-------------+--------+
| 5           | 76071  |
| 1           | 22517  |
| 4           | 63539  |
+-------------+--------+
输出:
+-------------+
| employee_id |
+-------------+
| 1           |
| 2           |
+-------------+
解释:
雇员 1,2,4,5 都在这个公司工作。
1 号雇员的姓名丢失了。
2 号雇员的薪水信息丢失了。

4.2 思路:

两张表union去重,然后查询排序。

4.3 题解:

with tep as (
    select employee_id
    from Employees
    where employee_id not in (
        select employee_id
        from Salaries
    )
    union 
    select employee_id
    from Salaries
    where employee_id not in (
        select employee_id
        from Employees
    )
)

select employee_id
from tep
order by employee_id

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值