【欧拉计划】007 第10001个质素

题目:

在这里插入图片描述

难点:

第10001个素数的范围估算不会超过20万
如何写出运行速度更快的代码

方法:

#include <stdio.h>
#include <math.h>

#define MAX_N 10001

int is_prime(int a) {
    for (int i = 2, I = sqrt(a); i <= I; i++) { 
    //初始化I = sqrt(a)提高效率
        if (a % i == 0) return 0;
    }
    return 1;
}

int main() {
    int n = 0;
    for (int i = 2; i < 200000; i++) {
        if (!is_prime(i)) continue;
        n += 1;
        if (n == MAX_N) {
            printf("%d\n", i);
            break;
        }
    }
    return 0;
}

最易懂且最慢的方法,每个数字都进行判断

代码优化:

优化1:

#include <stdio.h>

#define MAX_N 200000

int prime[MAX_N + 5] = {0};

void init_prime() {
    for (int i = 2, I = MAX_N; i <= I; i++) {
        if (prime[i]) continue;
        prime[++prime[0]] = i;
        for (int j = 2; j <= MAX_N / i; j++) {
            prime[i * j] = 1;
        }
    }
    return ;
}

int main(){
    init_prime();
    printf("%d\n", prime[10001]);
    return 0;
}

利用素数筛算法,空间复杂度为O(n),时间复杂度为O(n * loglogN)

优化2:

#include <stdio.h>

#define MAX_N 200000

int prime[MAX_N + 5] = {0};

void init_prime() {
    for (int i = 2; i <= MAX_N; i++) {
        if (!prime[i]) prime[++prime[0]] = i;
        for (int j = 1; j <= prime[0]; j++) {
            if (prime[j] * i > MAX_N) break;
            prime[prime[j] * i] = 1;
            if (i % prime[j] == 0) break;
        }
    }
    return ;
}

int main(){
    init_prime();
    printf("%d\n", prime[10001]);
    return 0;
}

利用线性筛算法,空间复杂度为O(n),时间复杂度为O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值