题目描述
很久以前,T 王国空前繁荣。为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市。
为节省经费,T 国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的。
J 是 T 国重要大臣,他巡查于各大城市之间,体察民情。所以,从一个城市马不停蹄地到另一个城市成了 J 最常做的事情。他有一个钱袋,用于存放往来城市间的路费。
聪明的 J 发现,如果不在某个城市停下来修整,在连续行进过程中,他所花的路费与他已走过的距离有关,在走第 x−1 千米到第 x 千米这一千米中(x 是整数),他花费的路费是 x+10 这么多。也就是说走 1 千米花费 11,走 2 千米要花费 23。
J 大臣想知道:他从某一个城市出发,中间不休息,到达另一个城市,所有可能花费的路费中最多是多少呢?
输入格式
输入的第一行包含一个整数 n(n≤105),表示包括首都在内的 T 王国的城市数。
城市从 1 开始依次编号,1 号城市为首都。
接下来 n−1 行,描述 T 国的高速路(T 国的高速路一定是 n−1 条)。
每行三个整数 Pi,Q,Di,表示城市 Pi 和城市 Qi 之间有一条高速路,长度为 Di(Di≤1000) 千米。
输出格式
输出一个整数,表示大臣J最多花费的路费是多少。
输入输出样例
输入 #1复制
5 1 2 2 1 3 1 2 4 5 2 5 4
输出 #1复制
135
说明/提示
样例解释:大臣 J 从城市 4 到城市 5 要花费 135 的路费。
AC代码如下(今天上点强度,好好学习一下深度搜索算法)
n = int(input())
graph =[[] for i in range (n+1)]
for i in range(n-1):
p,q,d = map(int,input().split())
graph[p].append((q,d))
graph[q].append((p,d))
def dfs(node,parent,dist,max_dist,far_node):
if dist>max_dist:
max_dist=dist# 如果当前距离大于已记录的最大距离
far_node=node
for neighbor,length in graph[node]:
if neighbor!=parent:
max_dist,far_node=dfs(neighbor,node,dist+length,max_dist,far_node)
return max_dist,far_node
def caculate(max_dist):
if max_dist==1:
return 11
else:
return (11+10+max_dist)/2*max_dist
max_dist=0
far_node=0
max_dist,far_node=dfs(1,0,0,0,0)
max_dist=0
max_dist,far_node=dfs(far_node,0,0,0,0)
print(int(caculate(max_dist)))