自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(42)
  • 收藏
  • 关注

原创 【无标题】六边形铺砖拓扑模型的深度解析:从几何结构到量子优势

G_{\mu\nu} = \underbrace{8\pi G T_{\mu\nu}}_{\text{爱因斯坦项}} + \underbrace{\gamma \mathcal{K}_{\mu\nu}^{(topo)}}_{\text{拓扑项}}\eta = \underbrace{\frac{E_z}{\text{顶点数}}}_{\text{单点效率}} \times \underbrace{\log_2(\text{连通度})}_{\text{信息容量}}

2025-06-12 20:53:01 210

原创 【无标题】NP完全问题的拓扑对偶统一解法 ——四色问题到P=NP的普适框架  

**收缩模型**:量子坍缩分箱 $\hat{H} = -\sum_c \hat{n}_c \log r_c + \lambda \sum_b \Theta(1 - \sum_c \pi r_c^2)$- **膨胀阶段**:数值映射为几何点 $P_i = (\sqrt{a_i} \cos \theta_i, \sqrt{a_i} \sin \theta_i)$1. **零点生成**:当 $B_i \cap B_j \neq \emptyset$ 生成零点 $Z_{ij}$

2025-06-11 19:10:36 666 1

原创 【无标题】装箱问题的拓扑动力学解法:几何凝聚与量子坍缩模型

装箱问题描述:给定物品集合 \( L = \{a_1, a_2, \dots, a_n\} \)(\( a_i \in (0,1] \)) 和箱子容量 \( C=1 \),求最小箱子数 \( k \) 使得所有物品可装入箱子。2. **几何凝聚**:信息守恒映射 \( \phi: \text{instance} \to \{\text{disks}\} \)- 每个物品 \( a_i \) 映射为半径 \( r_i = \sqrt{a_i/\pi} \) 的圆盘(面积守恒)

2025-06-10 20:23:14 353 1

原创 【无标题】顶点覆盖问题的拓扑动力学解法:膨胀-收缩对偶理论的应用

顶点覆盖问题描述:给定无向图 \( G = (V, E) \) 和整数 \( k \),是否存在大小不超过 \( k \) 的顶点子集 \( S \),使得每条边至少有一个端点在 \( S \) 中?| **拓扑模型** | \( \mathbf{O(1)} \) | \( \mathbf{O(n^2)} \) | 量子退火器 || **近似算法** | \( O(n) \) (解质量差) | \( O(n) \) | 经典计算机 |- 在交点生成**零点** \( Z_{AC}, Z_{BD} \)

2025-06-10 15:22:41 275

原创 【无标题】子集和问题的拓扑模型多项式时间算法详解

每个数字 $a_i \in S$ 映射为点 $P_i = (\sqrt{a_i} \cos \theta_i, \sqrt{a_i} \sin \theta_i)$| **拓扑模型** | $\mathbf{O(n \log n)}$ | $O(n)$ | 几何量子隧穿 |当 $a_i + a_j = t$ 时,$d \to 0$,必然触发 $d < \ell_P^{(2)}$| 分治 | $O(2^{n/2})$ | $O(2^{n/2})$ | 中间集 |

2025-06-10 06:04:19 234

原创 【无标题】路径着色问题的革命性重构:拓扑色动力学模型下的超越与升华

$ T(n,m) = \underbrace{O(n)}_{\text{建模}} + \underbrace{O(m \cdot \text{len(path)})}_{\text{着色}} + \underbrace{O(n)}_{\text{同步}} = O(n+m) $$$$ \mathcal{F}: \mathbb{R}^3 \to \mathbb{R}^2 \quad \text{丢失} \ \Delta h = \int \kappa dA $$

2025-06-05 20:17:03 1308 1

原创 【无标题】平面图四色问题P类归属的严格论证——基于拓扑收缩与动态调色算法框架

underbrace{O(|E|)}_{\text{预处理}} + \underbrace{O(|V|)}_{\text{排序}} + \underbrace{O(|V|) \times O(1)}_{\text{着色}} = O(|V|^2)**推论**:Kempe 链 \(L_{c_i,c_j} \subseteq H_v\) ⇒ \(|L| \leq |V(H_v)| \leq 6 < \infty\)**引理**:\(\forall H_v\) 的直径 \(d(H_v) \leq 3\)

2025-06-04 14:20:41 740

原创 【无标题】图着色问题的革命性解决方案:拓扑膨胀-收缩对偶理论

$ T(n) = \underbrace{O(n)}_{\text{检测}} + \underbrace{O(n)}_{\text{建模}} + \underbrace{O(n \times \Delta)}_{\text{着色}} = O(n^2) $$$$ \text{相交面积} S_{\cap} = 2r^2 \cos^{-1}\left(\frac{d}{2r}\right) - \frac{d}{2}\sqrt{4r^2-d^2} $$**定理**:在拓扑收缩模型下,图着色问题$\in P$

2025-06-04 14:03:22 351

原创 【无标题】路径 NP 完全问题的革命性解决方案:拓扑膨胀-收缩对偶理论

形成量子零点:$Z_{ij} = \frac{\vec{r_i} + \vec{r_j}}{2} + \Gamma(\hbar)$$$ z\text{-坐标} \mapsto \theta = \frac{z}{z_{\max}} \cdot 2\pi $$- 维度压缩比:$ \mathcal{R} = \frac{V_3}{A_2} \sim \frac{R}{\ell_P} $- 信息密度:$ \mathcal{I} = \frac{c}{4G\hbar} \oint \theta d\phi $

2025-06-04 13:50:06 1065 2

原创 【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

色流守恒:$ \oint_{\partial S} \vec{J}_{color} \cdot d\vec{l} = \frac{\partial}{\partial t}\int_S \rho_{color} dA $$$ \mathcal{C}_{topo}(G) = \min_{\text{所有嵌入}} \left( \sum_{e \in E} \chi(e) + \sum_{v \in V} \zeta(v) \right) $$

2025-06-04 12:30:46 432 1

原创 【无标题】拓扑膨胀与收缩问题的部分解析与拓展

即使使用量子算法(如拓扑量子计算机),通用拓扑膨胀的复杂度仍受限于 **辫群表示** 的维度增长 \( \dim \mathcal{H} \sim e^{n} \),导致指数级资源需求。拓扑膨胀可归约为 **图同构问题** 或 **三维流形分类问题**,两者均属NP-Intermediate类,既未被证明属于P,也未被证明为NP-完全。- **归约示例**:将膨胀操作映射为图的自同构群生成,其时间复杂度下界为 \( \Omega(n^{\log n}) \),远超多项式时间。

2025-05-19 09:41:27 396

原创 【无标题】动态调色机制的完备性证明与验证

平面图四色着色等价于存在映射 \( \chi: V \to \{1,2,3,4\} \),满足边邻接约束 \( \chi(v_i) \neq \chi(v_j) \quad \forall e_{ij} \in E \)。- **时间复杂度**:预处理 \( O(n) \),排序 \( O(n) \),着色 \( O(n) \),总 \( T(n) = O(n) \)。- **欧拉公式**:对连通平面图 \( G=(V,E) \),满足 \( |E| \leq 3|V| - 6 \)。

2025-05-12 09:52:13 434

原创 【无标题】四色拓扑收缩模型中环形套嵌结构的颜色保真确定方法

**量子叠加态决策**:在顶点处使用量子叠加态 \( |\psi_v\rangle = \frac{1}{\sqrt{2}}(|c_1\rangle + |c_2\rangle) \),通过干涉测量坍缩为确定态,避免经典随机性。- **零点虚边与环形嵌套**:在顶点 \( v \) 处引入环形嵌套结构(如环面 \( T^2 \)),通过虚边连接形成闭合路径。在四色拓扑收缩模型中,通过顶点处的环形嵌套结构与零点虚边连接,结合路径传播规则和量子决策机制,**可以实现全局百分之百的颜色复原**。

2025-05-01 21:01:07 403

原创 【无标题】四色定理研究团队的构建与实施路径——跨学科建模、编程与理论拓展的全流程方案

在Qiskit中模拟色传递过程,量化保真度 \( \mathcal{F} = \text{Tr}(\rho_{\text{ideal}} \rho_{\text{noisy}}) \);| **角色** | **职责** | **技能要求** |四色定理研究需通过**跨学科团队协作**、**多模型编程验证**与**理论-实验闭环迭代**推进。

2025-04-29 18:41:32 377

原创 【无标题】NP问题的降维处理与信息保留办法的拓扑模型:黑洞理论与四色动力学的融合框架

1. **降维投影**:通过Morse函数 \( f: \mathcal{P} \to \mathbb{R}^k \) 将高维问题压缩到低维底空间 \( B \);在降维后的平面图 \( G' \) 中,原高维图的色数 \( \chi(G) \) 可通过边界色序 \( \chi(\partial G') \) 完全重构。若降维后的底空间 \( B \) 满足 \( \chi(B) = 2 - 2g \),则原NP问题的复杂度为 \( O(n^{2g}) \)。

2025-04-23 12:46:26 539

原创 【无标题】多项式问题的几何化与拓扑计算理论

**多项式方程**:如 \( P(x_1, x_2, \dots, x_n) = 0 \) 定义仿射簇 \( V(P) \subset \mathbb{C}^n \)。- **同调群与上同调**:通过 \( H_k(X) \) 分析空间连通性,但计算复杂度为 \( O(n^3) \),难以直接用于NP问题。- **黎曼猜想**:非平凡零点位于 \( \text{Re}(s) = 1/2 \),对应素数的“量子混沌”分布。- **几何化可行性**:多项式问题可嵌入几何空间,但需发展适配的拓扑工具;

2025-04-23 11:49:13 450

原创 【无标题】四色拓扑模型与黑洞信息存储的统一性论证(猜想)——基于规范场论与全息原理的跨学科研究

mathcal{Z}_{\text{wormhole}} = \int \mathcal{D}A_\mu e^{iS_{\text{CS}}} \quad (S_{\text{CS}} \text{ 为陈-西蒙斯作用量})\nabla_\mu \chi(p) = \partial_\mu \chi(p) + ig A_\mu \chi(p) \quad (A_\mu \text{ 为规范场})**引理2.1**:收缩后的图 \( G' \) 保持四色性,且色数 \( \chi(G') = 4 \)。

2025-04-13 10:22:26 298

原创 【无标题】四色定理的P类归属证明 ——基于拓扑收缩与动态调色算法的多项式时间解

其中 \( D_\mu = \partial_\mu + iA_\mu \),\( A_\mu \) 为SU(4)规范场,曲率平坦条件 \( F_{\mu\nu} = 0 \) 保证颜色一致性。1. **虚边插入**:对非相邻顶点对 \( (v_i, v_j) \),插入虚边 \( e_{ij}^\text{virtual} \),确保所有面为三角形。1. **顶点排序**:按度数降序排列顶点 \( v_1, v_2, \dots, v_n \),使用桶排序优化至 \( O(n) \)。

2025-04-07 09:14:05 479

原创 【无标题】关于四色定理的P类归属证明解析

的数学表述,将颜色分配视为SU(4)规范场的自发对称性破缺过程,通过Wilson环路积分路径无关性(曲率 \mathcal{F}=0F=0)保证颜色相位的一致性。这一物理视角为算法的时间复杂度提供了更深层次的几何解释。关于四色定理的P类归属证明,其核心在于构造一个能够在多项式时间内确定平面图四色性的算法,并严格验证其时间复杂度。综上,算法总时间复杂度为 O(n)O(n),满足多项式时间要求,故平面图四色问题属于。在三角剖分图上应用贪心算法,并引入。

2025-03-29 15:29:38 338

原创 【无标题】四色拓扑模型与宇宙历史重构的猜想框架

**大尺度结构网络**:将星系团映射为四色顶点,纤维状暗物质结构作为边,构建宇宙尺度平面图 \( \mathcal{G}_{\text{cosmo}} = (V_{\text{galaxy}}, E_{\text{filament}}) \)。- **时间反演算子**:定义 \( \mathcal{T}_{\text{color}} = CPT \otimes X_{\text{flip}} \),其中 \( X_{\text{flip}} \) 为全局颜色翻转算符。

2025-03-05 22:02:26 600

原创 【无标题】四色拓扑模型与量子退相干保真的深度融合框架(猜想)

**暗能量解释**:虚边隧穿的能量涨落对应暗能量密度 \(\rho_{dark} = \frac{\lambda}{8\pi G} \langle F_{\mu\nu}F^{\mu\nu} \rangle\)。- **逻辑量子比特编码**:将量子态 \(|0\rangle, |1\rangle\) 映射为四色中的两色(如红/蓝),剩余两色(绿/黄)作为**冗余校验色**。- **曲率-误差对应**:规范场曲率 \(F_{\mu\nu}\) 的涨落对应退相干噪声,平坦条件 \(F=0\) 为理想保真态。

2025-03-04 07:14:05 350

原创 【无标题】四色拓扑模型在量子退相干保真中的数学与物理实现框架(假想)——四色拓扑模型正是解决退相干的关健,即便在模型中保真度只剩下极少一部分,但通过一部分四色稳定结构的色传递,瞬间恢复所有信息。

**颜色态编码**:将量子比特的基态 \( |0\rangle, |1\rangle \) 扩展为四色态 \( \{|c_1\rangle, |c_2\rangle, |c_3\rangle, |c_4\rangle\} \),通过色排斥规则(相邻异色)实现错误检测。其实现需结合经典模拟验证、量子硬件映射与机器学习优化。- **步骤2**:模拟退相干噪声(如振幅阻尼、去相位),计算保真度 \( F(t) = \langle \psi_0 | \rho(t) | \psi_0 \rangle \)。

2025-03-03 22:17:07 392

原创 【无标题】四色定理拓扑证明的数学强化与物理深化框架

**Wilson环积分路径** | 闭合路径 \( \gamma \)、虚边隧道、规范场 \( A_\mu \) 流向 | \( W(\gamma) = e^{i\pi/2} \) 相位积累公式 |- **证明**:设原图 \( G \) 为平面图,插入零点 \( p \) 将边 \( e_{AB} \) 拆分为 \( e_{Ap} \)、\( e_{pB} \)。

2025-03-01 22:56:14 631

原创 【无标题】### **四色定理拓扑模型的深化建构与数学验证**

**可收缩条件**:当且仅当存在嵌入映射 \( f: C \to D^2 \) 使得 \( f(\partial C) = v_c \),此时环绕数 \( w=0 \)。*定理*:对于平面图G,若所有顶点对 \((v_i,v_j)\) 的关联性被完全表达(通过实边或虚边),则势能曲面 \( V(\phi) \) 的简并谷被消除。S = -k_B \sum_{\chi} P(\chi) \ln P(\chi) \quad \text{(极小值在四色态)}

2025-02-27 23:43:48 377

原创 【无标题】补充:数学与物理解析类球体与亏格形面相邻、亏格形与亏格形面相邻

设类球体 \( S^3 \) 与亏格一(环面)流形 \( T^2 \times I \)(\( I = [0,1] \))通过共享二维面 \( F \simeq S^2 \) 或 \( T^2 \) 相邻。其中 \( \chi(M) = \chi(S^3) + \chi(T^2 \times I) - 2\chi(F) = 0 + 0 - 0 = 0 \),符合平坦或双曲流形特性。若接触面 \( F \) 为自对偶曲面,则 \( p_1(M) \) 增加 \( \chi(F) \)。

2025-02-22 18:54:38 337

原创 【无标题】三维相邻相遇分类的数学与物理系统化解析

**线接触**:曲线 \( \gamma \subset \partial S_1^3 \cap \partial S_2^3 \),收缩为边 \( e_\gamma \),同调链 \( \partial e_\gamma = v_1 - v_2 \)。- **点接触**:单点 \( p \in \partial S_1^3 \cap \partial S_2^3 \),拓扑收缩为顶点 \( v_p \),同调群 \( H_0(v_p) \cong \mathbb{Z} \)。

2025-02-19 21:27:58 600

原创 【无标题】四色定理的解析与证明(旧版补充)

——四色定理的解析与证明定理表达——地图中相邻区域标注不同颜色。无论平面内图形如何细分或增减与变化,只用四种颜色就可以区分表达。数学表达——数学语言表示即“将平面任意地细分为不相重叠的区域,每一个区域总可以用1234这四个数字之一来标记而不会使相邻的两个区域得到相同的数字。这里所指的相邻区域是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。解析:如果四色定理是成立的,无论平面内图形如何细分或增减变化都只用四种颜色就可从区分表达。

2025-02-18 19:51:18 908 1

原创 补充:数学解析:沿直线相遇的维度收缩与信息保留

int_{A \cup B} d^3x = \int_\gamma \left( \int_{S^1 \times S^1} \omega \right) dx \quad \Rightarrow \quad \text{体积信息转化为线积分}- **卷曲维度**:坍缩的法向维度 \( N_\gamma \) 紧致化为微观纤维环 \( S^1 \times S^1 \),形成纤维丛 \( E = \gamma \times (S^1 \times S^1) \)。

2025-02-17 22:17:37 354

原创 【无标题】

**亏格二(双环面流形 \( \Sigma_2 \))**:基本群 \( \pi_1(\Sigma_2) \cong \langle a,b,c,d \mid aba^{-1}b^{-1}cdc^{-1}d^{-1} \rangle \),收缩后为两个交联环 \( S^1 \vee S^1 \)。- **亏格一(环面流形 \( T^2 \))**:基本群 \( \pi_1(T^2) \cong \mathbb{Z} \times \mathbb{Z} \),可收缩为单一闭合环 \( S^1 \)。

2025-02-15 22:26:18 441 1

原创 空间拓扑、维度卷曲与流形几何的基本性质多角度解析

**四维视角**:亏格一的环面流形在四维空间中可嵌入为**纽结补空间**,其收缩行为与三维不同。- **类球体(亏格0)**:可通过拓扑收缩映射到一点(如三维球面 \( S^3 \)),其Heegaard分解的亏格为1,且满足 \( g(M) \geq \frac{1}{2}(t_1 + t_2 + 1)g(F) \) 的约束。- **亏格变化与维度**:亏格一卷曲为亏格二时,维度并未增加,而是通过**拓扑手术**(如Dehn扭转或柄体添加)改变流形结构。### **一、三维流形的收缩与亏格性质**

2025-02-15 22:23:05 350

原创 补充——拓扑收缩与封闭区域的数学解析及量与场的转换

**量子涨落**:真空中零点能 \( E_0 = \frac{1}{2} \hbar \omega \) 导致闭合区域边界发生**拓扑隧穿**,表现为虚边 \( e_{ij}^{\text{virtual}} \) 的动态生成。- **单纯复形模型**:收缩后的结构为二维单纯复形 \( \mathcal{K} = \{v_A, v_B, v_C, e_{AB}, e_{BC}, e_{CA}\} \),其闭包为三角形面 \( f_{ABC} \)。

2025-02-11 21:23:22 316

原创 高维流形中的拓扑收缩与颜色传递机制

高维流形中的颜色问题展现出远超低维的复杂性,但通过**维度卷曲的拓扑操作**、**高阶规范场的物理映射**以及**组合数学的升维推广**,我们得以窥见其深层结构。尽管面临庞加莱猜想级难题的挑战,这一方向仍为数学与理论物理的交叉提供了肥沃土壤。在 \( n \geq 4 \) 维流形中,区域的“相邻”需重新定义为**共享一个 \( (n-1) \)-维面**。- **超立方体复形**:在 \( n \)-维超立方体分割中,构造完全图 \( K_{2n} \),证明色数 \( \chi \geq 2n \)。

2025-02-10 18:45:12 442

原创 三维流形着色问题的拓扑收缩推广与色数分析

**正八面体复形**:构造由8个四面体构成的复形,其对应图 \( G \) 为完全图 \( K_6 \),证明 \( \chi(G) \geq 6 \)。- **拓扑约束**:若流形中存在不可压缩环 \( \gamma \),则无法通过收缩操作消除,需在图 \( G \) 中保留为环结构 \( C_k \)。- **邻接保留**:若 \( R_i \) 与 \( R_j \) 相邻,则在顶点 \( v_i, v_j \) 间建立边 \( e_{ij} \)。仅共享边或点不视为相邻。

2025-02-08 20:18:35 453

原创 ——四色定理的解析与证明(完整版)

本文提出一种**拓扑动力学与场论启发的全新证明路径**,旨在重构四色定理的数学叙事。手绘稿更进一步赋予其生命力!2. **色通道建立**:从 \( p_i \) 向 \( \mathcal{S} \) 内部插入虚边 \( e_{p_i \to \mathcal{S}} \),形成颜色传递隧道(见图1-a)。1. **收敛于零点**:将 \( e_{v_{\text{ext}} p_j} \) 重参数化为虚边 \( e_{v_{\text{ext}} \leadsto p_j} \),表示非邻接关联。

2025-02-07 12:17:13 1432 1

原创 【无标题】环形坍缩后的内外拓扑独立性图解析

q: \mathcal{C} \to v_c, \quad \text{商拓扑 } \mathcal{C}/\sim \ \text{ 保持平面性}.证明:假设存在 \( \chi(v_c) = \chi(u) \),则必存在实边连接 \( v_c \) 与 \( u \),违反虚边隧道隔离条件。- 环形边界 \( \partial\mathcal{C} \) 与内部子结构 \( \mathcal{S} \) 在点 \( p \) 接触。- **Layer 3**:零点接触与色传递路径(红点+绿色箭头)。

2025-02-04 09:02:28 449

原创 【无标题】对称性破缺势能曲面与简并谷结构图示解析

**Goldstone模传播** | 相位振动拉氏量 \( \mathcal{L}_{\text{Goldstone}} = \frac{v^2}{2} \sum_{j=1}^3 (\partial_\mu \theta_j)^2 \) |- \( \phi = (\phi_1, \phi_2, \phi_3, \phi_4) \in \mathbb{C}^4 \) 为颜色序参量。- \( \lambda > 0 \) 控制破缺强度,\( \kappa \) 引入四色选择的各向异性。

2025-02-03 21:14:21 384

原创 【无标题】Wilson环积分路径与颜色相位传递生成图解析

虚边 \( e_{p_1 \to \mathcal{S}}, e_{p_2 \to \mathcal{S}} \) 穿透环形屏障,连接内部子结构 \( \mathcal{S} \)。- 沿闭合路径 \( \gamma \) 的规范场积分 \( \oint_\gamma A_\mu dx^\mu \)。- **虚边重构**:调整虚边隧道的联络 \( A_\mu \),使 \( W(\gamma) \to 1 \)。- 若 \( W(\gamma) \neq 1 \),触发颜色翻转(Kempe链响应)。

2025-02-03 09:13:10 396

原创 【无标题】四色定理拓扑模型中关键问题的深度解析

text{区域完整性条件:} \quad \forall v_i, v_j \in V, \exists \text{路径 } v_i \leadsto p \leadsto v_j。\chi(v_i) \neq \chi(v_j) \quad \text{若 } \exists \text{实路径 } v_i \leftrightsquigarrow v_j。\chi(f_i) \neq \chi(f_j) \quad \text{若 } f_i, f_j \text{ 共享边}

2025-02-02 18:00:05 339

原创 【无标题】环形内嵌结构的拓扑动力学模型

2. **色通道建立**:从 \( p_i \) 向 \( \mathcal{S} \) 内部插入虚边 \( e_{p_i \to \mathcal{S}} \),形成颜色传递隧道(见图1-a)。1. **收敛于零点**:将 \( e_{v_{\text{ext}} p_j} \) 重参数化为虚边 \( e_{v_{\text{ext}} \leadsto p_j} \),表示非邻接关联。其中 \( V(x) \) 为环形结构的拓扑势能,\( \chi \) 为颜色场能级。

2025-02-01 20:26:16 396

原创 【无标题】四色定理的拓扑——图论证明框架

**穿透性虚边**:在 \( A \) 的边界零点 \( p_1, \dots, p_m \) 处建立虚边穿透通道 \( e_{B_ip_j} \),使得内部区域着色与外部解耦。1. **度约束**:由 \( |E| \leq 3|V| -6 \),存在度数 \( \deg(v) \leq 5 \) 的顶点 \( v \)。1. **三维流形推广**:探究三维细分空间是否满足 \( \chi \leq K \)(目前已知 \( K \geq 6 \))。

2025-01-31 20:43:43 424

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除