激光炸弹。

本文介绍了一种使用二维前缀和解决的问题,计算炸弹摧毁范围内目标总价值,关注边界条件,通过算法实现求解最大价值组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目名字

https://www.luogu.com.cn/problem/P2280

题意

炸弹可以摧毁一个边长为m的正方形内的所有目标。地图上有n个目标,每个目标有坐标(x,y)和价值v。现在需要计算一颗炸弹最多能炸掉地图上总价值为多少的目标。

思路

  1. 读取输入,包括n、m和每个目标的坐标和价值。
  2. 针对每个目标,计算其所在的正方形范围内的其他目标的总价值。
  3. 找到所有正方形范围内价值最大的目标组合。
    输出这个最大总价值。

坑点

  1. 边界情况:要确保考虑到所有可能的边界情况,包括目标与爆炸范围边界相交或者完全包含在范围内的情况。

算法一:XX+XX

二维前缀和

实现步骤
  1. 读取输入,包括n、m和每个目标的坐标和价值。
  2. 遍历所有目标,计算其与其他目标组成的正方形范围内的目标价值总和,将每个目标的正方形范围内的目标价值总和保存到一个二维数组中。
  3. 找到所有正方形范围内价值最大的目标组合。

5.将这些价值最大的目标保存到一个集合中,遍历其所在正方形范围内的其他目标,找到价值最大的组合。
6输出这个最大总价值。

代码
 #include<bits/stdc++.h>
using namespace std;
int main(){
    int n,m;
    cin>>n>>m;
    int a[5010][5010]={0};
    for(int i=0;i<n;i++){
        int x,y,v;
        cin>>x>>y>>v;
        a[x][y]=v;
    }
    int ans=0;
    for(int i=0;i<5010;i++){
        for(int j=0;j<5010;j++){
            if(i!=0){
                a[i][j]+=a[i-1][j];
            }
            if(j!=0){
                a[i][j]+=a[i][j-1];
            }
            if(i!=0&&j!=0){
                a[i][j]-=a[i-1][j-1];
            }
        }
    }
    for(int i=0;i<5010;i++){
        for(int j=0;j<5010;j++){
            int sum=a[i][j];
            if(i-m>=0){
                sum-=a[i-m][j];
            }
            if(j-m>=0){
                sum-=a[i][j-m];
            }
            if(i-m>=0&&j-m>=0){
                sum+=a[i-m][j-m];
            }
            ans=max(ans,sum);//取最大值
        }
    }
    cout<<ans<<endl;
}
 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值